One step process for making breathable, clay filled polymer...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C501S141000, C501S145000, C501S148000

Reexamination Certificate

active

06451895

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to methods of making compositions comprising a water-responsive polymer and clay particles. Particularly, the present invention relates to methods of making compositions comprising melt blending organically modified clay or layered silicate particles and a water-responsive polymer that is optionally degradable, desirably environmentally degradable. In an exemplary embodiment, the water-responsive polymer is a polymer of ethylene oxide. In another embodiment, the water-responsive polymer is a graft copolymer of ethylene oxide.
BACKGROUND OF THE INVENTION
Disposable personal care products such as pantiliners, diapers, tampons, etc. are a great convenience. Disposable products provide the benefit of one time, sanitary use and are convenient, quick and easy to use. However, disposal of products is a concern. Incineration of products is not desirable because of increasing concerns about air quality and the costs and difficulty associated with separating incineratable products from non-incineratable articles. Dumping of products is also undesirable due to concerns with limited landfill space and increasing land cost. Consequently, there is a need for disposable products which may be quickly and conveniently disposed of without dumping or incineration.
It has been proposed to dispose of these products in municipal and private sewage systems. Ideally, these products would be both flushable and degradable, desirably biodegradable, in conventional sewage systems. Articles suited for disposal in sewage systems that can be flushed down conventional toilets are termed “flushable.” Disposal by flushing provides the benefit of providing a simple, convenient and sanitary means of disposal.
Flushable products must have sufficient strength under the conditions in which they will be used. Thus, it is desirable for flushable personal care products to withstand the elevated temperature and humidity conditions encountered during use, yet lose integrity upon contact with water in the toilet. It is also desirable that these personal care products are breathable in order avoid the build-up of perspiration and increase the level of comfort of the consumers of these products. Therefore, a breathable material having mechanical integrity when dry and that readily disintegrates upon immersion in water is highly desirable.
Due to its unique interaction with water and body fluids, poly(ethylene oxide) (hereinafter PEO) is currently being considered as a component material for water-sensitive compositions. PEO,
—(CH
2
CH
2
O)
n

is a commercially available, water-soluble polymer that can be produced from the ring opening polymerization of the ethylene oxide,
Because of its water-solubility and breathability, PEO is desirable for flushable and personal care applications. Although conventional PEO films are not as fluid stable as desired for many personal care applications and are difficult to process using conventional processing techniques, modified PEO compositions are being developed that are amenable to conventional melt processing. There is still a need to further improve the liquid stability of water-responsive an degradable polymer compositions.
Many have attempted to overcome these difficulties. U.S. Pat. No. 4,902,553 to Hwang et al. describes disposable articles comprising a liquid impermeable, vapor permeable film. The liquid impermeable, vapor permeable film described by Hwang et al. comprises a crystallizable, stretched polyolefin-based film and a rattle-reducing additive which may be poly(ethylene oxide). However, the liquid impermeable, vapor permeable films of U.S. Pat. No. 4,902,553 require at least one nucleating agent which may be talc or calcium carbonate and stretching to achieve breathability. The amounts of nucleating agent are limited to very small amounts, 0.05 to 5 percent by weight. These amounts of inorganic, nucleating agent are insufficient to be defined as fillers. Further, stretching is required to generate porosity and hence breathability and subsequent leaching of the rattle-reducing agent is desired. In contrast, the films of the present invention do not require stretching for breathability and do not necessarily require a nucleating agent or a crystallizable polyolefin. Normally, the addition of inorganic filler to a polymer without stretching to create voids does not enhance the breathability of the polymer. Conventional fillers such as mica, calcium carbonate and kaolin are not expandable. Many of these conventional fillers are plate-like in shape and provide barriers to the diffusion of air and vapors.
U.S. Pat. No. 3,895,155 describes coated, transparent plastic articles. The transparent plastic may comprise poly(ethylene oxide). An inorganic, protective coating is applied as a separate layer over the transparent plastic article to improve surface hardness, increase stretch resistance, and facilitate non-fogging. The inorganic, protective coating may comprise various metal oxides. However, the coating forms a separate, discrete, glass-like layer from the transparent plastic article and the resulting coating and articles are not breathable or flushable.
U.S. Pat. Nos. 5,075,153, 5,244,714, and 5,672,424 to Malhotra et al. describe multilayered or coated recording sheets designed for electrostatic printing processes. The recording sheets comprise a base sheet with an anti-static layer, which may be made from poly(ethylene oxide). The recording sheets comprise an additional toner-receiving layer, which comprises inorganic oxides such as silicon dioxide, titanium dioxide, calcium carbonate, or the like. The poly(ethylene oxide) and inorganic oxides are contained in separate layers, the anti-static layer and the toner-receiving layer respectively. The recording sheets are not breathable or flushable.
U.S. Pat. No. 4,276,339 to Stoveken describes a laminated product comprising a paper layer and a foamed layer. Poly(ethylene oxide) is described as one of many possible components of an aqueous dispersion of latexes from which the foamed layer is made. Inorganic fillers such as clay or silica are suggested as possible additions to the aqueous dispersion of latexes in order to increase the solids content and density of the aqueous dispersion of latexes. The aqueous dispersion from which the foamed layer is made must be capable of being foamed and requires foaming in order to be breathable.
Currently available water-responsive, degradable and breathable compositions are not as stable when in contact with aqueous fluids as desired for many personal care applications. What is needed in the art is a means to improve the stability of water-responsive resins in contact with aqueous fluids. What is also need in the art is a method for making and controlling the fluid stability and degradability of water-responsive resins when in contact with aqueous fluids and for improving the processability of water-responsive, degradable and breathable compositions.
SUMMARY OF THE INVENTION
The present invention provides a method of producing compositions with controlled mechanical and/or structural stability when in contact with aqueous fluids. The compositions of the present invention comprise a blend of at least two components: (1) a polymer that is water-responsive and optionally degradable and (2) organically modified clay particles and/or organically modified layered silicate particles. Suitable water-responsive polymers include polymers and copolymers of ethylene oxide and other polar polymers whose properties degrade when exposed to water and aqueous solutions. Suggested water-responsive polymers include polar polymers with ester groups including degradable polyesters and polylactides. Desirably, the water-responsive polymer is environmentally degradable, particularly biologically degradable. Suitable organically modified clays include organically modified clays from the smectite group, such as montmorillonites and bentonites. Compositions, films, fibers and articles made by the method of the present invention have controlled degradabilit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

One step process for making breathable, clay filled polymer... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with One step process for making breathable, clay filled polymer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and One step process for making breathable, clay filled polymer... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2860789

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.