Photomatrix device

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Light application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S088000, C607S089000, C606S002000, C606S013000

Reexamination Certificate

active

06443978

ABSTRACT:

TECHNICAL FIELD
This invention concerns medicine and biology, in particular, it concerns physiotherapy and photobiology and it deals with the therapeutic influence of light on various human being's organs, micro-organisms and plants in combination with other kinds of energy, including magnetic field, electrostimulation, mechanical therapy, vacuum-therapy, etc.
PREVIOUS LEVEL OF TECHNOLOGY
A device for light-therapeutic influence on different human being's areas is known; it consists of the sources of optical radiation, for example, such as lasers or light diodes coupled with a power supply unit and a timer [Illarionov V.E. Fundamentals of laser therapy, Moscow, Respect, 1992, pp. 26, 31, 71-80]. Sources of radiation are placed separately or installed into anglepoised heads or connected with light fibers, through which the radiation is directed onto the bioobject. The disadvantage of such devices is the difficulty in creating the uniform light exposure over extensive pathological zones on the human being's body, especially when these zones have complex spatial geometry.
The closest device, in technical terms, is a combined therapeutic device, which consists of several narrow-band sources in form of light diodes with the radiation wavelengths varying in the spectrum range from 0.25 &mgr;m to 2 &mgr;m [1]. The sources of radiation can operate either in a continuous mode or in a pulse one with a wide range of frequencies and pulse profiles. The sources of radiation are usually placed at the butt-end parts of anglepoised hands, which can be fixed against the shell of a power supply unit with the help of special holders.
The drawbacks of these device are the impossibility to irradiate extensive pathological zones when they are located, for instance, on different sides of the bioobject, which is typical, in particular, for burns, oedemas or dermatological pathologies that involve all sides of a limb; difficulty in selective irradiation of a surface with complex geometry in accordance with the given pattern of irradiation, for example, elbow and knee bents, the upper side of the head, areas of the alimentary tract, sex organs, etc. with the simultaneous exception of neighbouring areas from the process of irradiation; the impossibility of establishing a required distance between the sources of radiation and bioobject along the whole pathological zone, particularly, to avoid the danger of potential touching a wounded or burnt surface by the sources at involuntary movements of the patient; excessive locality and low dose of influence with respect to the whole pathology in photodynamic therapy of voluminous tumours or in the above-skin irradiation of blood.
DISCLOSURE OF THE INVENTION
In order to exclude the shortcomings mentioned, i.e., to increase the effectiveness of light therapy when treating extensive pathological zones with a complex geometry, the device is equipped with the sources of radiation with a singular spectrum range or various spectrum ranges which are connected with a control unit, a power supply unit and supplementary physiotherapeutic modules (ultrasonic, vacuum, magnetic, electric and other kinds of therapy) placed outside, in particular, on a substrate whose shape is similar to the shape of the spatially extensive pathological zone. Indicatrixes of radiation for each source and their position in space around the bioobject are oriented so as to provide the required distribution, for example, a uniform light exposure within the area of interest. Wavelengths of the sources are chosen on the basis of concurring the absorption wavelengths of biomolecules of both exogenous and endogenous origins.
The sources of radiation (emitters) in the case of a relatively smooth change of the surface relief are placed uniformly on the substrate. Their number N, the distance between them d and the power for each of them P can approximately be determined from the system of interconnected expressions:
P

I



π



R
2
k
;


(
1
)
d

2

R
k
;
(
2
)
N

I



S
P



τ
,
(
3
)
where I—the intensity of radiation on the bioobject's surface with the pathological zone square S; R—the mean radius of the light spot on the bioobject produced by a single source of radiation that is determined through the equation R=h·tg &agr;, where h—the average distance between the surface of the substrate and the bioobject; &agr;—the half-angle of divergence of radiation from the source; &tgr;—losses of radiation in optical systems (0≦&tgr;≦1); k—the ratio that takes into consideration the degree of overlapping the light beams on the bioobject's surface (1k≦N).
In order to introduce the average distance h between the object and the source of radiation and to avoid their touching, additional stops are placed between the source of radiation and bioobject. For instance, these stops can be made in form of spring elements connected with the substrate at one side and with flexible rings, which grasp the bioobject (for example, a limb), at the other side. To get the best usage of the radiation scattered or reflected from the bioobject, the surface of the substrate between the sources of radiation is made mirror-like. In order to fix the substrate against the bioobject, a holder in form of, for instance, adhesive tape is introduced. A commutation unit, coupled with the control unit, and other physiotherapeutic modules as well as the biological sensors of feedback connected with the commutation unit are introduced additionally, which provides the switching of the sources with different spectrum ranges and supplementary physiotherapeutic modules in accordance with a program given, for example, it can provide their separate or simultaneous operation.
Apart from that, the substrate can be furnished with side flanges, which have elastic edges bordering on the bioobject's surface, to provide the air-tightness of the space over the pathological area, with additional modules connected with the corresponding control units being installed into the substrate to regulate the temperature, pressure and gas composition over the pathological area as well as to bring various medicinal and other substances, for instance, magnetic fluids and sprays.
Moreover, a hood transparent for the radiation is introduced between the surfaces of the substrate and bioobject, with its edges adjoining the bioobject's surface, into which the physiotherapeutic modules enumerated above are installed.
Furthermore, a flexible elastic strip grasping the pathological area tightly is introduced between the surfaces of the substrate and bioobject; the strip is suffused with a medicinal compound and is transparent for the optical-range radiation employed.
The light sources can be made in form of distant ends of light-guides connected with the corresponding sources of radiation, in particular, with lasers installed into the substrate, with the semi-mirror-like diffusive strip following the bioobject's shape and being placed between the surfaces of the substrate and bioobject. A required distribution of radiation, including a uniform one, over a large surface can also be achieved with the help of the system of splitting mirrors.
The control and commutation units together with the autonomous power supply unit can be placed immediately on the substrate, with the power supply unit being made either as a one-time operation unit using the packet of miniature batteries or as a re-usable operation unit at the expense of using re-chargeable batteries. Remote power supply is realised by inductive coil coupled with the sources of radiation and additional physiotherapeutic modules, in particular, with electrodes for an electrostimulator, and an external source of pulse electromagnetic field with the following parameters: the pulse width is about 10
−6
-10
−2
sec, the tension of the magnetic field is 10
−3
-10 Tesla, the frequency of repetition is 1-10
3
Hz.
The source of optical

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Photomatrix device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Photomatrix device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photomatrix device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2860330

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.