Illuminated fiber decorated balloons

Illumination – Light fiber – rod – or pipe – Ornamental or decorative

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C362S234000, C362S238000, C362S253000, C362S096000, C446S219000, C446S220000

Reexamination Certificate

active

06371638

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to illuminated decorative balloons and movable illumination members inserted therein.
BACKGROUND OF THE INVENTION
It is desirable to use illuminated balloons as decorative or as elements at festive occasions, such as birthday parties, accessories in the general decor of night clubs or similar establishments.
The prior art does have some notable examples of methods and apparatus to illuminate balloons. Stewart (U.S. Pat. No. 4,787,575) describes a sturdy signal balloon device of special construction with either an electrically conductive tether or a fiber optic tether. However, Stewart '575 does not describe how to illuminate a buoyant lightweight party balloon with a minimal net lifting weight. Also, Stewart '575 does not describe how to vary the illumination emitted from the balloon, to provide a sparkling festive party atmosphere.
Malcolm (U.S. Pat. No. 5,083,250) shows a cone shaped floatable light socket and lamp accessory using a conductive tether within a balloon However, Malcolm '250 requires leaving the socket within the orifice neck of the balloon, and therefore the socket is stationary in place.
Akman (U.S. Pat. No. 5,119,281) describes a balloon lighting device and method involving a rigid plug through which the balloon is inflated and which also serves as a conduit for the insertion of an illuminating bulb. As in Malcolm '250, the plug of Akman '281 is stationary within the neck of the balloon.
Schalk (U.S. Pat. No. 5,295,891) describes a bowl shaped device that both illuminates the balloon from the outside as well as clamping the end to prevent escape of gas. However, in Schalk '891, the balloon is not floating buoyant and is held within the buoy-shaped device. Kubiatowicz (U.S. Pat. No. 5,215,492) relates to cool illumination of balloons by internally suspended electrical or chemoluminescent means. However, in Kubiatowicz '492, the suspended light source gives off light uniformly, and does not vary by the motion of the balloon.
Perez (U.S. Pat. No. 5,117,344) describes a light source externally attached to a balloon powered by a conductive tether and illuminating a translucent pattern through the balloon.
Perez (U.S. Pat. No. 5,075,830) also shows a specially constructed balloon which is externally illuminated by an attached light source. However, in Perez '344, and Perez '830 the illuminating device encumbers the outside of the balloon.
Marletta (U.S. Pat. No. 4,542,445) describes a torch-like apparatus with a balloon attached at the end of a rigid tube; the balloon is illuminated by a light source at the end distal to the balloon. However, in Marletta '445 the balloon is restricted in movement due to its attachment to the rigid tube.
Dreyfuss (U.S. Pat. No. 5,444,607) illustrates a funnel shaped balloon coupling atop a battery box which also houses an illuminating bulb. However, this is used as a table-top display device, not for a buoyant balloon.
Schwartz (U.S. Pat. No. 3,592,157) describes a large illuminated balloon using an internal light source to be used as a signal beacon or display device. It has a reflective lower internal surface, and the light, which may be flashing, is powered via a conductive tether.
The embodiments of this invention differ from the prior art in several respects as will become evident upon examination.
OBJECTS OF THE INVENTION
It is an object of the present invention to use a single fiber optic tether to illuminate a buoyant balloon or to project patterns on its surface.
It is a further object of the present invention to relate the color and intensity of the balloon illumination to music or other sound sources.
It is another object of the present invention to illuminate a buoyant balloon with a variety of colors in a random fashion as a function of balloon motion.
It is yet a further object of the present invention to illuminate patterns on the surface of a buoyant balloon.
It is yet another object of the present invention to provide a swaying illuminated balloon tree.
It is yet another embodiment to improve over the disadvantages of the prior art.
SUMMARY OF THE INVENTION
In keeping with these objects and others which may become apparent, a preferred embodiment of the present invention is an illuminated balloon assembly, wherein a light source is attached to a buoyant, floating balloon, upon inflation, by a light transmitting tether.
Typically, an inflatable translucent balloon body has a predetermined net lifting force upon inflation with a lighter than air gas, such as helium. Therefore to keep the buoyant balloon afloat while attached to the light transmitting tether, the light transmitting tether must have a net weight of less than the net lifting force of the balloon in an inflated state with lighter than air gas therein.
In a non-preferred embodiment, balloons with gases which are equal to or greater than air, such as exhaled breath or argon, will not be buoyant, but they can be illuminated. However, in this non-preferred embodiment, the inflated balloon must be supported either by an upright wood, such as a wooden or plastic dowel, or must be suspended from an upper surface, such as a ceiling, by a supporting tether.
In a preferred embodiment, light transmitting tether includes one or more light transmitting fibers, such as fiber optic fibers of glass, silicon or plastic, projecting light outwards through the translucent balloon in its inflated state.
The balloon can be either enlargeable to an inflated state by being elastic, such as made of rubber or latex, or the balloon may be inflatable but inelastic, such as made of a flexible but inelastic plastic as MYLAR®, as long as it is translucent.
To vary the light patterns emanating from the light emitting ends of the light transmitting fibers, the ends may be shaved or shaped in predetermined geometric shapes, such as a flat facet, a truncated facet, a cube or a rounded dome.
The light source may be a box having a light source powered by an electrical power source, wherein the light source is an incandescent lamp, a light emitting diode, a laser light or a flashing xenon lamp.
To power the light source, the electrical power source may be either an internal DC power battery or an AC power connection to an AC utility power.
To inflate the balloon and insert the light transmitting fibers therein, an optional inflator includes a nozzle connected to a helium gas tank, wherein the nozzle has an orifice end and the balloon is stretchable and sealed over the nozzle. Preferably the inflator has a soft tubing segment, into which the light transmitter fibers are insertable for insertion thereafter into the balloon.
Optionally, the balloon may be attached to an illumination modulator including a microphone communicating with an amplifier. The microphone transmits ambient sounds, such as external music or crowd noise, to the amplifier, which amplifies the ambient sounds to one or more filters, such as a low pass audio filter, a mid-range band pass filter or a high pass audio filter. The filters pass frequencies of these amplified ambient sounds to one or more power amplifiers, which provide electrical power to light one or more colored and variably flashable light bulbs. The flashing of each colored light bulb responds to the amplified frequencies of the ambient sounds.
To further enhance the flashing of the lights within the balloons in time to the ambient sounds, such as music, an auxiliary audio input may be selectively wired by a switch to the power amplifier to add artificial sound to the amplified ambient sound.
In an optional embodiment, the light source and the light transmitting tether are suspended together from an interior wall of the balloon. The light source may be a suspendable light module having one or more light emitting diodes and a battery power source lighting the light emitting diodes.
In yet another embodiment, the light module may include a motion sensor, which responds to randomly movements of said light module within the balloon.
In yet still another embodimen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Illuminated fiber decorated balloons does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Illuminated fiber decorated balloons, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Illuminated fiber decorated balloons will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2856773

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.