Preassembled aerosol actuator assembly for in-line capping...

Dispensing – With discharge assistant – Fluid pressure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S183000

Reexamination Certificate

active

06454139

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an improved preassembled aerosol actuator assembly of the type containing a separate discrete spray button for use with a product container topped by an aerosol valve with a valve stem extending upwardly therefrom. More particularly, the present invention relates to an improved preassembled aerosol actuator assembly particularly adapted for in-line capping of the actuator assembly onto the product container. Further, the improved assembly is adapted to prevent undesired product-dispensing actuation of the aerosol valve stem during capping of the assembly onto the product container.
BACKGROUND OF THE INVENTION
Aerosol actuator assemblies of the type utilizing a separate discrete spray button are known, wherein such buttons with different spray patterns/characteristics for different aerosol products may be used with a single design of actuator. The manufacturing efficiencies of having a single design of actuator for multiple designs of buttons is self evident. The button commonly is positioned in a button-receiving socket which depends from an actuator lever pivotally hinged from the shell or dome of the aerosol actuator. The button may be initially mounted on an aerosol valve stem followed by applying the actuator over the mounted button to position the button in the socket and cap the actuator onto the product container.
It is also desirable and known to preassemble the discrete spray button into the button-receiving socket depending from the actuator lever, followed by capping of the preassembled actuator assembly with button onto the aerosol product container. The manufacturer of the actuator and button may carry out the preassembly before shipping the preassembled actuator assembly to the product filler, who then can apply and cap the preassembled actuator as received in a single step. This, as opposed to the button and actuator being shipped unassembled to the filler, the filler then having to do the first step of mounting the button to the aerosol valve stem followed by the second step of applying the actuator over the mounted button and completing the capping operation.
Product fillers generally own capping machines known as in-line cappers which have been commonly used for many years to place caps on aerosol containers. A general example of such a capper is shown in U.S. Pat. No. 3,872,651 issued Mar. 25, 1975 to The Kartridg Pak Co. In such KP in-line cappers, various forms of caps for aerosol containers are moved down an inclined conveyor and placed onto product containers also moving along a conveyor at essentially the same speed as the caps. Thereafter, the caps are pushed downward to attach onto the container. To date, however, it has not been feasible to consistently cap the above-designated preassembled aerosol actuators onto product containers in an in-line capping machine. This is due to inadequacies in the design of the preassembled aerosol actuators, and accordingly a filler wishing to use such preassembled aerosol actuators may need to purchase more specialized and expensive forms of capping machines rather than use in-line cappers already in the filler's plant.
In-line capping machines in operation generally have substantial inherent vibration. In prior art preassembled aerosol actuators of the above-described type wherein the discrete spray button is mounted within the button-receiving socket depending from the pivotal actuator lever, such sockets generally do not have a sufficient lead-in space below the bottom of the button for the valve stem, resulting in the valve stem bouncing or vibrating out of the socket during in-line capping; and/or the socket has structural obstructions and/or unintended valve stem-capturing openings so that bouncing or misalignment of the valve stem can occur upon in-line capping; and/or the spray button itself has structural obstructions and/or unintended valve stem-capturing openings at the bottom end of the button other than the intended valve stem opening, and/or an inadequate lead-in profile into the intended valve stem opening, such that a bouncing or vibration of the valve stem out of the button structure or misalignment of the valve stem with the button can occur upon in-line capping. Further, the button-receiving socket depending from the actuator lever commonly has a spray slot in its wall extending to the bottom end of the socket, which slot also provides a path for the valve stem to escape the bottom end of socket as the actuator assembly undergoes in-line capping. It will be appreciated that even a few instances of improper capping of such preassembled aerosol actuators during in-line capping can be quite disruptive of the efficiencies of the filler's operation.
It is also a desideratum of in-line capping of the preassembled actuator assemblies that undesired product-dispensing actuation of the aerosol valve not occur during the capping operation. Prior art button structures commonly have valve stem-sealing sockets that are excessive in depth, whereby the passage of the valve stem into the stem-sealing socket may cause such undesired product-dispensing actuation of the aerosol valve unless other steps are taken such as maintaining the stem out of contact with the button during capping.
SUMMARY OF THE INVENTION
The present invention provides an actuator assembly for use with an aerosol product container topped by an aerosol valve with a valve stem extending upwardly therefrom. This assembly is particularly adapted for use with in-line capping equipment, but of course may be used with other types of capping equipment if desired in a particular instance. The assembly has an actuator shell with an open bottom for mounting to the filled aerosol product container, and a shell top with an opening within which is positioned an actuator lever member having a first end hinged to the shell and a second end free to pivot. A button receiving socket depends from the lever and has a bottom open end. A discrete spray button is preassembled into and retained in the button-receiving socket, the button having an outer side wall and a bottom end positioned, upon preassembly, a substantial distance above the bottom open end of the button-receiving socket. The discrete button further has an upwardly extending interior passage with a wide lead-in beginning at the bottom end of the button directly adjacent the outer side wall of the button and converging upwardly to terminate in a stem-sealing socket for the valve stem. The bottom end of the button accordingly is characterized by the absence of obstructing structure and unintended valve stem-capturing openings to bounce or misalign the valve stem upon in-line capping of the actuator assembly. The lead-in, obstruction-free, distance from the bottom of the button-receiving socket to the bottom of the preassembled button first captures and retains the valve stem in the bottom of the socket as the actuator is delivered onto the container during in-line capping, and the valve stem is thereafter passed up the smooth lead-in profile of the upwardly converging interior button passage to the stem-receiving socket as the in-line capping is completed.
The button-receiving socket of the present invention has a side wall slot, which may extend to the bottom of the socket for ease in molding, through which spray from the spray button passes (as well as through an aligned opening in the shell side wall) upon actuation of the aerosol valve. The nozzle of the button is aligned with the slot by a respective tongue and groove arrangement between the button and interior side wall of the socket, and an interference fit is created by the tongue and groove to frictionally retain the button in the socket. Where the slot extends to the bottom of the socket, a flap is molded exterior to the socket adjacent the slot at the bottom end of the socket, thus assuring that once the valve stem is captured in the lower end of the socket below the button during capping, the valve stem prior to entering the button cannot immediately exit the socket through th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Preassembled aerosol actuator assembly for in-line capping... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Preassembled aerosol actuator assembly for in-line capping..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preassembled aerosol actuator assembly for in-line capping... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2840950

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.