Methods and reagents for quantitation of HLA-DR expression...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C436S800000

Reexamination Certificate

active

06376202

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to improved methods, reagents and kits for quantitating the expression of HLA-DR on the surface of human peripheral blood cells, particularly on the surface of peripheral blood monocytes. The invention further relates to methods for assessing immune competence and for directing and monitoring immunostimulatory therapies for sepsis based upon the levels of monocyte HLA-DR expression so measured.
BACKGROUND OF THE INVENTION
Sepsis is one of the most common causes of death in developed countries. Incidence is increasing, and mortality remains high.
Early efforts to understand sepsis and to intervene in the progressive multiorgan failure of septic shock focused upon readily observable physical, physiologic, and anatomic symptoms. To this day, the acute management of fever, infection, coagulatory dysfunction, vascular collapse and end-organ failure remains the standard of care.
More recent efforts, however, have focused upon immunologic mediators thought to underlie these. systemic processes.
Animal models of sepsis have, for example, implicated a number of cytokines as mediators of the systemic inflammatory response seen early in the septic patient. In these models, acute parenteral challenge with endotoxin or with gram negative bacteria leads to production of tumor necrosis factor &agr; (TNF&agr;), interleukin-1 (IL-1), and gamma interferon (IFN&ggr;). Gamma interferon has been shown to act synergistically with TNF&agr; in inducing shock in these animals.
Yet recent efforts to treat sepsis by immunomodulation have proven disappointing. Attempts to reduce or ablate the effects of proinflammatory cytokines, particularly TNF&agr; and IL-1, have not only failed to improve outcome, but have in several cases increased mortality. Fisher et al.,
JAMA
271:1836-43 (1994); Fisher et al.,
N. Engl. J. Med.
334:1697-1702 (1996); Fisher et al.,
Crit. Care Med.
21:318-327 (1993); reviewed in Bone,
JAMA
276:565 (1996). There thus exists a need for immunomodulatory therapies that improve clinical outcomes in sepsis.
Recently, several observations have motivated an alternative, seemingly contrarian, immunomodulatory approach.
Acute bacterial invasion is in fact an atypical clinical presentation for human sepsis. In most patients, sepsis is a late complication of trauma, burn, or major surgery. Infections in these patients—coming late, as a secondary response to antecedent injury, rather than early, as the primary and actual cause of septic shock—bespeak a possible systemic immunosuppression or immune paralysis, rather than a state of hyperimmunity as predicted by the acute animal models.
In particular, studies have shown that HLA-DR expression by monocytes is severely depressed after trauma, and that such depressed levels correlate clinically with an increased susceptibility of trauma patients to infection. Polk et al.,
Ann. Surg.
204:282 (1986); Hershman et al.,
Clin. Exp. Immunol.
77:67-70 (1989).
Depression of monocytic HLA-DR expression has also been shown in a study of patients undergoing elective or emergent neurosurgery: patients who develop infectious complications in the postoperative period display a significantly lower level of monocytic HLA-DR expression than patients with an uncomplicated course; very low HLA-DR expression (fewer than 30 percent of peripheral blood monocytes positive for HLA-DR expression) predicts high risk for infection following surgery. Asadullah et al.,
Crit. Care. Med.
23:1976-1983 (1995).
Depression in HLA-DR expression has further been observed in the peripheral blood monocytes of septic patients with a wide variety of precipitating ailments. In these latter studies, surface immunophenotypic changes were further associated with decreased monocytic antigen-presenting function, reduced production of TNF&agr;, IL-1 and IL6, anergy, and alterations in lymphocyte activity. Volk et al.,
Behring Inst. Mitt.
88:209-215 (1991); Docke et al., in Reinhart et al. (eds.),
Sepsis: Current Perspectives in Pathophysiology and Therapy,
New York: Springer-Verlag (1994), pp 473-500.
Monocytes, like macrophages, B cells, and dendritic cells, are “professional” antigen presenting cells (APCs). Although a number of cell types are capable of processing soluble antigens for subsequent display to T lymphocytes, the so-called “nonprofessional” APCs lack the accessory molecules required to complete the process of T cell activation. “Professional” antigen-presenting cells, such as monocytes, not only process and present antigens in the context of MHC, but also possess the additional accessory molecules required to complete T cell activation, rendering them critical to the development of a full T cell-directed immune response. Reversal of monocytic deactivation in late-stage sepsis might, therefore, be expected to improve immune function, conferring clinical benefit.
Gamma interferon (IFN&ggr;) is a major activator of monocytes. It upregulates the surface expression of costimulatory and HLA molecules, increasing monocyte antigen-presenting capacity, and primes for the LPS-induced production of proinflammatory cytokines. Young et al.,
J. Leukocyt. Biol.
58:373-381 (1995).
A single clinical trial of gamma interferon treatment of late-stage sepsis has been reported. Peripheral blood monocyte HLA-DR levels were monitored in patients meeting the inclusion criteria for severe sepsis. Gamma interferon was administered to those patients in whom, over two consecutive days, fewer than 30% of peripheral blood monocytes measured positive for HLA-DR expression. Treatment was continued until the percentage of monocytes with demonstrable HLA-DR expression remained over 50% for three days. Of the 10 patients, 8 showed an increase in monocyte HLA-DR expression within 1 day of treatment; the other 2 responded within 2 to 3 days. The recovery of monocytic HLA-DR expression was associated with restitution of monocytic function in vivo, as evidenced by a significant increase of TNF&agr; and IL-6 plasma levels during treatment and a more favorable clinical outcome. Kox et al.,
Arch. Intern. Med.
157:389-393 (1997); Döcke et al.,
Nature Med.
3:678-680 (1997).
Because administration of a proinflammatory cytokine would be contraindicated, however, in the early, hyperimmune phase of sepsis, there exists a need for a rapid, reliable method for measuring HLA-DR expression on peripheral blood monocytes. There further exists a need for a method that would report values for a given peripheral blood sample that are reliably and substantially independent of the individual testing laboratory.
Typically, as in the reported clinical study, monocyte HLA-DR expression is assessed flow cytometrically. Monocytes are distinguished from other peripheral blood cells by either surface immunophenotype, physical properties (side scatter and/or forward scatter), or some combination thereof; HLA-DR levels are assessed on the monocytes so distinguished by use of a fluorophore-conjugated anti-HLA-DR antibody.
Monocytes may, for example, be distinguished using an antibody specific for CD14. CD14, a receptor for lipopolysaccharide, is expressed predominantly on cells of the myelomonocytic lineage; in peripheral blood, CD14 is expressed principally by monocytes. But granulocytes in the blood also react with anti-CD14 antibodies, albeit weakly, and with present anti-CD14 conjugates cannot be completely discriminated from monocytes. Gating out CD14
dim
cells, as a means of removing granulocytes from the analysis, removes CD14
dim
monocytes as well, confounding the HLA-DR analysis. There thus exists a need for a fluorophore that, when conjugated to anti-CD14 antibody, would permit the immunocytochemical discrimination of monocytes from granulocytes.
HLA-DR may readily be labeled on the surface of peripheral blood cells, including monocytes, using a fluorophore-conjugated anti-HLA-DR antibody. But the surface expression of HLA-DR on the surface of monocytes is not a simple, static, and stable phenotype. MHC restriction imposes conflicting demands on the protein proce

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods and reagents for quantitation of HLA-DR expression... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods and reagents for quantitation of HLA-DR expression..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods and reagents for quantitation of HLA-DR expression... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2839620

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.