Pond insert with pump

Liquid purification or separation – Structural installation – Geographic

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S198100, C210S416100, C417S187000, C417S423300, C261S077000, C261SDIG007, C239S023000

Reexamination Certificate

active

06423218

ABSTRACT:

The invention relates to a pond insert device or pond insert, particularly for insertion in a garden pond, having at least one motor-driven pump.
Pond pump systems of this type generally have an electromotively driven pump and are e.g. used for operating a fountain or the like with water collected in the garden pond. Alternative uses occur e.g. in connection with pond ventilation or aeration or with regards to the circulation and filtering of the pond water. For this purpose the water can be drawn in in the vicinity of an inlet connection of the pump and can be delivered through an outlet connection under a pressure raised in accordance with the particular use.
The problem of the invention is to provide a pond insert of the afore-mentioned type with a high service or use value.
This problem is solved by a pond insert having the features of claim
1
. Advantageous further developments are given in the subclaims, whose wording is made by reference into part of the present description.
In the case of a pond insert according to the invention, the preferably electromotively driven pump has on the outlet side a first outlet connection and additionally at least one second outlet connection. Such a construction with several, preferably two separately usable outlet connections represents a considerable extension of the use possibilities of pond pumps. Firstly, when necessary, several, optionally different functions can be simultaneously fulfilled with a single pump. Secondly the outlet connections can be designed in different ways with regards to the dimensioning, connection possibilities, passage cross-sections or passage quantities, etc., so that there are more variable connection possibilities with a better adaptation to desired functions. Several connections located at different points of the pump and optionally directed into different directions also create for a user more scope or latitude regarding the installation of such pond inserts and facilitate the connection of optionally provided, further functional units to the outlet connections.
It can in particular be provided that the first outlet connection and a second outlet connection are oriented or orientable substantially at right angles to one another and preferably one outlet connection is oriented or orientable substantially parallel and the second outlet connection substantially perpendicular to a standing surface of the pump. Thus, in the case of a regular standing position of the pond insert, one connection is oriented substantially vertically upwards and the other substantially horizontally.
According to a further development, at least one of the outlet connections is variably orientable relative to a standing surface of the pump. As a result of the preferably continuously monodimensionally or multidimensionally variable orientation over a suitable angular range, in simple manner it is e.g. possible to vary the projection direction of a connected jet or the connection can be advantageously oriented relative to a hose to be connected in such a way that the hose is connectable without an inadmissibly great bending or kinking. The variable orientation can e.g. be achieved in that the connection takes place to a flexible line portion fixable with respect to its bending position. Preferably, at least one outlet connection is provided on a preferably substantially dimensionally stable, water-carrying extension connected in directionally variable manner to a discharge connection socket of the pump. Preferably the discharge connection socket and the extension are connected by means of a water-carrying ball joint. The ball joint is in particular held frictionally in a position variable by overcoming the frictional force. The variable orientability of an outlet connection can also be advantageous with pumps having only a single discharge connection.
Another possibility for implementing a variable orientation of one or more discharge connections is provided in a further development in that with the pond insert is associated a standing foot means, which defines a standing surface for the pump and to which the pump can be fixed in movable and/or detachable manner. The standing foot means or standing platform can be so constructed that the pump is rotatable or pivotable with respect to the standing foot about a substantially standing surface-parallel axis. Thus, a connection socket or outlet connection oriented transversely to the pivoting axis and provided on the pump can be modified with respect to its orientation in space by pivoting the pump in the receptacle of the standing foot means. The receptacle for the pivotable equipment part in the standing foot means can e.g. have several locking positions for pivoting the equipment part preventing an unintentional pivoting. A standing foot can be an integral component of the pump or its casing.
According to a further development, in the case of at least one of the outlet connections, the flow quantity is adjustable independently of the pump drive. This permits a variable water delivery, even when using inexpensive pumps having a constant delivery. In particular, the passage cross-section of at least one outlet connection can be variable, preferably in a continuous manner, e.g. by means of an associated, preferably manually operable regulating valve.
It can be particularly advantageous if the first and the second discharge connection are so constructed in intercommunicating manner, that the flow quantity through a discharge connection is adjustable by regulating the flow quantity or cross-section of the other discharge connection. Thus, it is possible to operate one of the discharge connections with a constant flow cross-section and modify or adjust the flow quantity through said discharge connection, which can in particular lead to a fountain or the like, in such a way that the flow cross-section or quantity of the other discharge connection is e.g. variable through said regulating valve. In this case the other discharge connection acts as a bypass, by means of which in the case of a constant pump capacity the flow can be influenced by a connection with a constant cross-section. The regulating valve can, by means of a line or tube, be removed from the pump or the influenced outlet connection, so that e.g. the pump with a smaller line length and consequently with a lower pressure loss can be provided with one discharge connection on a fountain at a difficultly accessible place in the pond and an optionally flexible line can lead from the second discharge connection to the regulating valve at an easily accessible place in the pond. From the latter the delivery can be modified through the first discharge connection according to the bypass principle. If the cross-sectionally variable outlet connection is easily accessible, the regulating valve used for modifying the cross-section can be fitted, e.g. screwed directly thereto. It is also possible to construct bothor all the pump outlet connections with a variable flow cross-section, e.g. by associating corresponding regulating valves.
According to a further development, the inlet connection is constructed as an inlet socket with a screw thread or a coupling connection. Alternatively or additionally at least one discharge connection can be constructed as a discharge socket with a screw thread or a coupling connection. This makes it possible in simple manner, if necessary, to operate the pump for varying functions and/or with other operating parameters. For example, one pump discharge connection can be further branched and/or by means of a line, particularly a flexible line, such as a hose, laid or located at a point further removed from the pump. By means of an inlet connection equipped with a screw or coupling connection, e.g. a water source outside the pond can be connected. Thus, e.g. by means of a higher feed pressure, the delivery at the pump outlet and therefore e.g. the projection height of a fountain can be changed.
An advantageous use of a pump with several, particularly two outlet connections can consist of the simultaneous operat

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pond insert with pump does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pond insert with pump, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pond insert with pump will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2838329

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.