Directed evolution of thermophilic enzymes

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S350000

Reexamination Certificate

active

06335179

ABSTRACT:

The present invention relates to enzymes, particularly to thermostable enzymes. More particularly, the present invention relates to thermostable enzymes which are stable at high temperature and which have improved activity at lower temperatures.
Thermostable enzymes are enzymes that function at greater than 60° C. Thermostable enzymes are utilized in both industry and biomedical research in assays where certain steps of the assay are performed at significantly increased temperatures. Thermostable enzymes may be obtained from thermophilic organisms found in hot springs, volcanic origin, tropical areas etc. Examples of such organisms, for instance, include prokaryotic microorganisms, such as eubacteria and archaebacteria (Bronneomerier, K. and Staudenbauer, W. L., D. R. Woods (ed), the Clostridia and Biotechnology, Butterworth Publishers, Stoneham, M. A. (1993), among other organisms.
Thermostable enzymes exhibit greater storage life capacity and organic solvent resistance, as compared to their mesophilic counterparts.
There are applications in industry and in research for thermostable enzymes which exhibit enzyme activity at a desired minimum temperature. An example of this occurs in molecular diagnostics wherein reporter molecules must survive long term storage at room temperature or higher or they need to function in unusual environments, and the assays which employ them are performed at room temperature where the activity of thermostable enzymes is generally very low.
FIG. 1
illustrates the full length DNA sequence and corresponding deduced amino acid sequence of Thermococcus 9N2 Beta-glycosidase.
Applicant has found that it is possible to provide thermostable enzymes which have improved activity at lower temperatures.
More particularly, Applicant has found that the activity of thermophilic enzymes can be improved at lower temperatures while maintaining the temperature stability of such enzymes.
Still more particularly, Applicant has found there can be obtained a thermostable enzyme with improved activity at lower temperature by subjecting to mutagenesis a thermostable enzyme or polynucleotide encoding such thermostable enzyme followed by a screening of the resulting mutants to identify a mutated enzyme or a mutated polynucleotide encoding a mutated enzyme, which mutated enzyme retains thermostability and which has an enzyme activity at lower temperatures which is at least two (2) times greater than a corresponding non-mutated enzyme.
The thermostable enzymes and mutated thermostable enzymes are stable at temperatures up to 60° C. and preferably are stable at temperatures of up to 70° C. and more preferably at temperatures up to 95° C. and higher.
Increased activity of mutated thermostable enzymes at lower temperatures is meant to encompass activities which are at least two-fold, preferably at least four-fold, and more preferably at least ten-fold greater than that of the corresponding wild-type enzyme.
Increased enzyme activity at lower temperatures means that enzyme activity is increased at a temperature below 50° C., preferably below 40° C. and more preferably below 30° C.. Thus, in comparing enzyme activity at a lower temperature between the mutated and non-mutated enzyme, the enzyme activity of the mutated enzyme at defined lower temperatures is at least 2 times greater than the enzyme activity of the corresponding non-mutated enzyme.
Thus, lower temperatures and lower temperature ranges include temperatures which are at least 5° C. less than the temperature at which thermostable enzymes are stable, which includes temperatures below 55° C., 50° C., 45° C., 40° C., 35° C., 30° C., 25° C. and 20° C., with below 50° C. being preferred, and below 40 being more preferred, and below 30° C. (or approximately room temperature) being most preferred.
In accordance with an aspect of the present invention, the lower temperature or lower temperature range at which a greater enzyme activity is desired is determined and a thermostable enzyme(s), or polynucleotide encoding such enzyme(s), are subjected to mutagenesis and the resulting mutants are screened to determine mutated enzymes (or polynucleotide encoding mutated enzymes) which retain thermostability and which have a minimum desired increase in enzyme activity at the desired temperature or temperature range.
Thermostable enzymes are enzymes which have activity, i.e. are not degraded, at temperatures above 60° C. Thermostable enzymes also have increased storage life, and high resistance to organic solvents.
Thermostable enzymes may be isolated from thermophilic organisms such as those which are found in elevated temperatures such as in hot springs, volcanic areas and tropical areas. Examples of thermophilic organisms are prokaryotic organisms for example, thermophilic bacteria such as eubacteria and archaebacteria.
The DNA from these thermostable organisms can then be isolated by available techniques that are described in the literature. The IsoQuick® nucleic acid extraction kit (MicroProbe Corporation) is suitable for this purpose.
The term “derived” or “isolated” means that material is removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide separated from some or all of the coexisting materials in the natural system, is isolated.
The DNA isolated or derived from these microorganisms can preferably be inserted into a vector. Such vectors are preferably those containing expression regulatory sequences, including promoters, enhancers and the like. Such polynucleotides can be part of a vector and/or a composition and still be isolated, in that such vector or composition is not part of its natural environment.
Alternatively, enzymes not known to have thermostable properties can be screened for such properties by inserting the DNA encoding the enzyme in an expression vector and transforming a suitable host as hereinafter described, such that the enzyme may be expressed and screened for positive thermostable activity.
As representative examples of expression vectors which may be used there may be mentioned viral particles, baculovirus, phage, plasmids, phagemids, cosmids, phosmids, bacterial artificial chromosomes, viral DNA (e.g. vaccinia, adenovirus, foul pox virus, pseudorabies and derivatives of SV40), P1-based artificial chromosomes, yeast plasmids, yeast artificial chromosomes, and any other vectors specific for specific hosts of interest (such as bacillus, aspergillus, yeast, etc.) Thus, for example, the DNA may be included in any one of a variety of expression vectors for expressing a polypeptide. Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences. Large numbers of suitable vectors are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example; Bacterial: pQE70, pQE60, pQE-9 (Qiagen), psiX174, pBluescript SK, pBluescript KS, (Stratagene); pTRC99a, pKK223-3, pKK233-3, pDR540, pRIT2T (Pharmacia); Eukaryotic: PWLNEO, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVLSV40 (Pharmacia). Any other plasmid or vector may be used as long as they are replicable and viable in the host.
The DNA derived from a microorganism(s) may be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Such procedures and others are deemed to be within the scope of those skilled in the art.
The DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda P
R
, P
L
and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Directed evolution of thermophilic enzymes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Directed evolution of thermophilic enzymes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Directed evolution of thermophilic enzymes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2837467

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.