Isolated cover with independent sealing system

Internal-combustion engines – Frame construction – Horizontal cylinder

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S19800E

Reexamination Certificate

active

06371073

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to a vibration isolation or a noise attenuation and a fluid sealing systems, and more particularly to the use with an internal combustion engines or compressor.
BACKGROUND ART
A primary problem or difficulty encountered in the development of an operationally desirable and adequate internal combustion engine noise or vibration isolation system is the achievement of the isolation or attenuation of the noise or vibrations while preventing fluid leakage. As is well known in the art, such noise or vibration isolation systems conventionally employ some type of isolation medium which serves to absorb vibrations and thereby dampen or minimize any resulting noise or vibration transmissions. However, such isolation medium must also preserve the requisite sealing properties for the cylinder block or oil pan assembly.
Accordingly, a predetermined amount of pressure must be exerted or impressed upon the various components of the isolation system in order to achieve noise and/or vibration dampening or attenuation in combination with the sealing properties. It is well known in the art, however, that such pressure forces must be properly controlled or applied to the various components of the system in order to achieve the vibration and/or noise dampening or attenuation while preserving the integrity of the system sealing. If for example, an excessive amount of force is exerted upon the isolation medium, its stiffness characteristics are enhanced and it effectively becomes a solid member. The stiffness characteristics will more readily transmit noise and vibration, thus, reducing the effectiveness as a vibration isolator or a noise attenuation. On the other hand, if an inadequate amount of force is not exerted upon the isolation medium, fluid leakage may occur at the interface. For example, leakage could occur between the isolation medium and a cover component, or between the isolation medium and a cylinder block or an oil pan of the engine or compressor.
A need therefore exists in the art for the development of a vibration isolation or noise attenuation and fluid sealing system which can readily provide easy and desirably accurate or proper control of the pressure forces exerted or impressed upon the isolation medium of the system while preserving the sealing integrity of the system. Thus, substantially eliminating any leakage paths that would otherwise be defined or created between the isolation medium and the valve cover base, valve cover, or oil pan cover, as well as between the isolation medium and the cylinder block or oil pan.
The present invention is directed to overcome one or more of the problems as set forth above.
DISCLOSURE OF THE INVENTION
In one embodiment of the invention a vibration isolation, noise attenuation, fluid sealing system has a first member having a peripheral flange portion; a second member having a peripheral flange portion being adapted to be fixedly attached to the peripheral flange portion of the first member; a sealing flange member disposed in abutting engagement along an interface with the peripheral flange portion of the first member, and having a sealing member incorporated therein; a variably-tunable isolation member interposed the sealing flange member and the peripheral flange portion of the second member and respectively defining first and second interfaces with the sealing flange member and the peripheral flange portion of the second member; a bonding element adapted to bond the variably-tunable isolation member to the sealing flange member and the peripheral flange portion of the second member along the first and second interfaces respectively defined with the sealing flange member and the peripheral flange portion of the second flange member such that the peripheral flange portion of the second flange member, the isolation member, and the sealing flange member being a one-piece assembly, and so as to render the first and second interfaces fluid-tight; and a plurality of fasteners inserted through the peripheral flange portion of the second flange member, the isolation member, and the sealing flange member, and into the peripheral flange portion of the first flange member so as to secure the three-piece assembly to the peripheral flange portion of the first member while exerting predetermined compressive forces upon the isolation medium so as to variably alter the stiffness characteristics of the isolation member and thereby tune the isolation member to frequencies which enable dampening of noise and vibrations having predetermined frequencies.
And in another embodiment, a vibration isolation, noise attenuation, and fluid sealing system for use in connection with internal combustion engine components, has a first member having a peripheral flange portion. A second member has a peripheral flange portion adapted to be fixedly attached to the peripheral flange portion of the first member. A sealing flange member is disposed in abutting engagement along an interface with the peripheral flange portion of the first member, and has a sealing member incorporated therein for sealing the interface defined between the sealing flange member and the peripheral flange portion of the first member. A variably-tunable isolation member is interposed the sealing flange member and the peripheral flange portion of the second member and respectively defines a first and second interfaces with the sealing flange member and the peripheral flange portion of the second member. A bond element is adapted to bond the variably-tunable isolation member to the sealing flange member and the peripheral flange portion of the second member along the first and second interfaces respectively defined with the sealing flange member and the peripheral flange portion of the second flange member. The peripheral flange portion of the second flange member, the isolation member, and the sealing flange member is an one-piece assembly. And renders the first and second interfaces fluid-tight. And, a plurality of fasteners are inserted through the peripheral flange portion of the second flange member, the isolation member, and the sealing flange member, and into the peripheral flange portion of the first flange member. The plurality of fasteners secure the one-piece assembly to the peripheral flange portion of the first member while exerting predetermined a compressive forces upon the isolation medium. The predetermined compressive forces variably alter the stiffness characteristics of the isolation member and tune the isolation member to frequencies which enable dampening of noise and vibrations having predetermined frequencies.


REFERENCES:
patent: 3396712 (1968-08-01), Sakraida et al.
patent: 3773142 (1973-11-01), Bragg et al.
patent: 4027644 (1977-06-01), Timour
patent: 4066058 (1978-01-01), Anderkay
patent: 4219002 (1980-08-01), Danckert et al.
patent: 4388899 (1983-06-01), Shimada et al.
patent: 4498433 (1985-02-01), Ogawa
patent: 4522165 (1985-06-01), Ogawa
patent: 4538560 (1985-09-01), Alden
patent: 4593659 (1986-06-01), Wells et al.
patent: 4667628 (1987-05-01), Lopez-Crevillen
patent: 5513603 (1996-05-01), Ang et al.
patent: 6085709 (2000-07-01), Freese
patent: 6155226 (2000-12-01), Ozawa et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Isolated cover with independent sealing system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Isolated cover with independent sealing system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Isolated cover with independent sealing system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2829488

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.