Surgery – Diagnostic testing
Reexamination Certificate
1998-03-24
2002-04-23
Lacyk, John P. (Department: 3736)
Surgery
Diagnostic testing
C119S051020, C128S903000, C705S002000
Reexamination Certificate
active
06375612
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to tracking systems and in particular to a system and method for monitoring the movement of animals within an area to determine at least one physical condition of the animals.
BACKGROUND OF THE INVENTION
During the preparation of livestock for slaughter, the livestock are brought to a feedlot. At the feedlot, the livestock are processed in a hospital and processing area and treated with a variety of drugs before being delivered to pens in the feedlot. In the feedlot pens, the animals' rations are varied at specific times to prepare the animals for slaughter. During the animals' stay in the feedlot, the animals are examined regularly by sight to detect sick animals as well as animals which appear ready for market. This requires individuals to move through the feedlot pens on horseback resulting in the livestock being disrupted and their stress levels increased.
When an animal is determined to be market ready, the animal is shipped to the slaughterhouse. At the slaughterhouse, the quality of the animal is evaluated based on one of two government standards, namely yield grade or quality grade. Yield grade is a measure of an animal's red meat to fat and bone ratio. Yield grade 1, the most attractive, has a high red meat to fat and bone ratio while yield grade 5, the least attractive, has a low red meat to fat and bone ratio. Quality grade is a measure of an animal's intra-muscular fat associated with quality. In the United States, the four quality grades are Prime, Choice, Select and Standard. In Canada, the four corresponding quality grades are Prime, AAA, AA and A.
Ideally, animals that are shipped to the slaughterhouse meet high quality standards since penalties are imposed on the feedlot operator for animals that do not meet quality standards. The tendency therefore, is for feedlot operators to put animals on feed for longer durations even though the animals may be considered market ready. This poses problems in that feed costs and methane or greenhouse gas production are increased.
When an animal is identified as being “sick”, the animal is physically captured and taken to a hospital where the animal's temperature is taken to determine if in fact the animal is sick. Physically capturing the animal of course causes significant stress. If the animal is sick, the animal is treated with a range of antibiotics to cure many illnesses regardless of whether the animal requires treatment for all of these illnesses. If the animal is not sick, the animal is returned to the feedlot after having been stressed for no reason. Unfortunately, visual inspection of livestock to determine sickness is subjective making the accuracy of this method questionable. Also, significant lengths of time may elapse before sick animals are in fact visually identified as being sick. As will be appreciated, this prior art method of monitoring livestock in a feedlot suffers many disadvantages.
Systems to monitor animals remotely to collect data concerning the condition of the animals are known. For example, U.S. Pat. No. 5,474,085 to Hurnik et al. discloses an apparatus for remote sensing of livestock using a thermographic imaging system. The thermographic imaging system remotely monitors the location, weight and temperature of livestock by taking thermographic images of the animals. The thermographic images are digitized and converted into number arrays. The number arrays are interpreted by software executed by a computer to provide weight information in a decipherable form concerning the animals.
Canadian Patent No. 1,296,068 to Friesen discloses a physiological monitoring system to measure physiological functions such as the pulse rate or temperature of an animal. The system includes a remote telemetry system carried by the animal including sensors to sense conditions of the animal and store data representing the sensed conditions. The stored data is then transmitted to a master telemetry system for processing.
In the article entitled “Feeding Behavior of Feedlot Cattle” authored by Sowell et al., a system to measure the feeding behavior of feedlot cattle by monitoring cattle at a feedbunk is described. The system includes passive radio frequency (RF) tags carried by the cattle. A read panel in close proximity to the feedbunk communicates with the RF tags carried by cattle at the feedbunk to allow the presence and location of the cattle at the feedbunk to be recorded. The recorded information is processed to determine the average time untreated and treated cattle spend at the feedbunk.
Although the above-identified references disclose systems to monitor animals remotely, improved systems to provide information concerning the physical condition of animals within an area are desired.
It is therefore an object of the present invention to provide a novel method and system for monitoring animals within an area to determine at least one physical condition of the animals.
SUMMARY OF THE INVENTION
According to one aspect of the present invention there is provided a method of monitoring the movement of animals within an area comprising the steps of:
collecting positional data of each animal under observation;
processing said positional data to generate data representing the movement patterns of said animals; and
analyzing said movement pattern data to determine at least one physical condition of said animals.
In a preferred embodiment, the positional data is collected remotely and at intervals. During the analyzing step, the movement pattern data is compared with reference movement pattern data stored in a database representing typical movement patterns of animals exhibiting the at least one physical condition. The movement pattern data is compared with the reference movement pattern data to detect animals suspected of suffering a health problem. In this regard it is preferred that the movement pattern data is compared with the reference movement pattern data to detect animals exhibiting one or more of the following characteristics:
more frequent and longer duration visits to the water zone;
less frequent visits to the water zone;
generally overall decreased movement within the area;
more frequent and shorter duration visits to the water zone; and
less frequent and shorter duration visits to the water zone.
It is also preferred that the movement pattern data is compared with reference movement pattern data to detect the frequency and duration animals spend in the food zone either to determine a yield or quality grade for each animal. Furthermore, it is preferred that the movement pattern data is compared with reference movement pattern data to determine market ready animals. In this case, market ready animals can be shipped to slaughterhouses more quickly and reductions in greenhouse gas production can be calculated and sold as offsets to greenhouse gas producers.
According to another aspect of the present invention there is provided a system for monitoring the movement of animals within an area comprising:
a plurality of data collection and transmission units, each being carried by a respective animal, each of said data collection and transmission units transmitting animal position data over a wireless communications link; and
a processor in communication with said data collection and transmission units via said wireless communication link and receiving said animal position data, said processor processing said animal position data to generate data representing movement patterns of said animals and analyzing said movement pattern data to determine at least one physical condition of said animal.
According to another aspect of the present invention there is provided a system for detecting animals exhibiting at least one physical condition of interest within a predefined area comprising:
a receiver receiving position data for each of said animals under observation at intervals over a wireless communications link; and
a processor in communication with said receiver and processing said position data to generate a first database including data r
Booker Calvin W.
Guichon P. Timothy
Jim G. Kee
Kotelko Michael J.
Kotelko P. Bernard
Astorino Michael
Lacyk John P.
Perkins Jefferson
Piper Marbury Rudnick & Wolfe
LandOfFree
Method and system for monitoring animals does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for monitoring animals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for monitoring animals will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2828317