Comparative genomic hybridization (CGH)

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S071200, C536S023100, C536S024300

Reexamination Certificate

active

06335167

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to the field of cytogenetics, and more particularly to the field of molecular cytogenetics. It concerns methods of determining the relative copy numbers of different nucleic acid sequences in a subject cell or cell population and/or comparing the nucleic acid sequence copy numbers of substantially identical sequences in several cells or cell populations as a function of the location of those sequences in a reference genome. For instance, the methods of this invention provide the means to determine the relative number of copies of nucleic acid sequences in one or more subject genomes (for example, the DNA of one tumor cell or a number of cells from a subregion of a solid tumor) or portions thereof as a function of the location of those sequences in a reference genome (for example, a normal human metaphase spread). Further, the invention provides methods of determining the absolute copy number of nucleic acid sequences in a subject cell or cell population.
Although the examples herein concern human cells and the language is primarily directed to human concerns, the concept of this invention is applicable to genomes from any plant or animal. The genomes compared need only be related closely enough to have sufficient substantially identical sequences for a meaningful analysis. For example, a human genome and that of another primate could be compared according to the methods of this invention.
BACKGROUND OF THE INVENTION
Chromosome abnormalities are associated with genetic disorders, degenerative diseases, and exposure to agents known to cause degenerative diseases, particularly cancer, German, “Studying Human Chromosomes Today,”
American Scientist
, 58: 182-201 (1970); Yunis; “The Chromosomal Basis of Human Neoplasia,”
Science
, 221: 227-236 (1983); and German, “Clinical Implication of Chromosome Breakage,” in
Genetic Damage in Man Caused by Environmental Agents
, Berg, Ed., pgs. 65-86 (Academic Press, New York, 1979). Chromosomal abnormalities can be of several types, including: extra or missing individual chromosomes, extra or missing portions of a chromosome (segmental duplications or deletions), breaks, rings and chromosomal rearrangements, among others. Chromosomal or genetic rearrangements include translocations (transfer of a piece from one chromosome onto another chromosome), dicentrics (chromosomes with two centromeres), inversions (reversal in polarity of a chromosomal segment), insertions, amplifications, and deletions.
Detectable chromosomal abnormalities occur with a frequency of one in every 250 human births. Abnormalities that involve deletions or additions of chromosomal material alter the gene balance of an organism and generally lead to fetal death or to serious mental and physical defects. Down syndrome can be caused by having three copies of chromosome 21 instead of the normal 2. This syndrome is an example of a condition caused by abnormal chromosome number, or aneuploidy. Down syndrome can also be caused by a segmental duplication of a subregion on chromosome 21 (such as, 21q22), which can be present on chromosome 21 or on another chromosome. Edward syndrome (18+), Patau syndrome (13+), Turner syndrome (XO) and Kleinfelter syndrome (XXY) are among the most common numerical aberrations. [Epstein,
The Consequences of Chromosome Imbalance; Principles, Mechanisms and Models
(Cambridge Univ. Press 1986); Jacobs,
Am. J. Epidemiol
, 105: 180 (1977); and Lubs et al.,
Science
, 169: 495 (1970).]
Retinoblastoma (del 13q14), Prader-Willis syndrome (del 15q11-q13), Wilm's tumor (del 11p13) and Cri-du-chat syndrome (del 5p) are examples of important disease linked structural aberrations. [Nora and Fraser,
Medical Genetics; Principles and Practice
, (Lea and Febiger (1989).]
One of the critical endeavors in human medical research is the discovery of genetic abnormalities that are central to adverse health consequences. In many cases, clues to the location of specific genes and/or critical diagnostic markers come from identification of portions of the genome that are present at abnormal copy numbers. For example, in prenatal diagnosis, as indicated above, extra or missing copies of whole chromosomes are the most frequently occurring genetic lesion. In cancer, deletion or multiplication of copies of whole chromosomes or chromosomal segments, and higher level amplifications of specific regions of the genome, are common occurrences.
Much of such cytogenetic information has come over the last several decades from studies of chromosomes with light microscopy. For the past thirty years cytogeneticists have studied chromosomes in malignant cells to determine sites of recurrent abnormality to glean hints to the location of critical genes. Even though cytogenetic resolution is limited to several megabases by the complex packing of DNA into the chromosomes, this effort has yielded crucial information. Among the strengths of such traditional cytogenetics is the ability to give an overview of an entire genome at one time, permitting recognition of structural abnormalities such as inversions and translocations, as well as deletions, multiplications, and amplifications of whole chromosomes or portions thereof. With the coming of cloning an detailed molecular analysis, recurrent translocation sites have been recognized as involved in the formation of chimeric genes such as the BCR-ABL fusion in chronic myelogeneous leukemia (CML); deletions have been recognized as frequently indicating the location of tumor suppressor genes; and amplifications have been recognized as indicating overexpressed genes.
Conventional procedures for genetic screening and biological dosimetry involve the analysis of karyotype. A karyotype is the particular chromosome complement of an individual or of a related group of individuals, as defined both by the number and morphology of the chromosomes usually in mitotic metaphase. It include such things as total chromosome number, copy number of individual chromosome types (e.g., the number of copies of chromosome X), and chromosomal morphology, e.g., as measured by length, centromeric index, connectedness, or the like. Karyotypes are conventionally determined by chemically staining an organism's metaphase, prophase or otherwise condensed (for example, by premature chromosome condensation) chromosomes. Condensed chromosomes are used because, until recently, it has not been possible to visualize interphase chromosomes due to their dispersed condition and the lack of visible boundaries between them in the cell nucleus.
A number of cytological techniques based upon chemical stains have been developed which produce longitudinal patterns on condensed chromosomes, generally referred to as bands. The banding pattern of each chromosome within an organism usually permits unambiguous identification of each chromosome type (Latt, “Optical studies of Metaphase Chromosome Organization,”
Annual Review of Biophysics and Bioengineering
, 5: 1-37 (1976)].
Unfortunately, such conventional banding analysis requires cell culturing and preparation of high quality metaphase spreads, which is time consuming and labor intensive, and frequently difficult or impossible. For example, cells from many tumor types are difficult to culture, and it is not clear that the cultured cells are representative of the original tumor cell population. Fetal cells capable of being cultured, need to be cultured for several weeks to obtain enough metaphase cells for analysis. over the past decade, methods of in situ hybridization have been developed that permit analysis of intact cell nuclei-interphase cytogenetics. Probes for chromosome centromeres, whole chromosomes, and chromosomal segments down to the size of genes, have been developed. With the use of such probes, the presence or absence of specific abnormalities can be very efficiently determined; however, it is tedious to test for numerous possible abnormalities or to survey to discover new regions of the genome that are altered in a disease.
The p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Comparative genomic hybridization (CGH) does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Comparative genomic hybridization (CGH), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Comparative genomic hybridization (CGH) will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2825956

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.