Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acid esters
Reexamination Certificate
2000-01-05
2002-07-02
Killos, Paul J. (Department: 1623)
Organic compounds -- part of the class 532-570 series
Organic compounds
Carboxylic acid esters
C562S506000
Reexamination Certificate
active
06414181
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field
The instant invention relates to methods of producing cyclopropanecarboxylic acid compounds.
2. Description of Related Art
Matsui et al. (Agric. Biol. and Chem., Vol. 27, pages 373 to 378, 1963) describes a process of producing a cyclopropanecarboxylic acid compound which is encompassed by the following reaction formula:
In the process described by Matsui et al., tert-butyl (±)-trans-2,2-dimethyl-3-[2-methyl-1-propenyl]cyclopropanecarboxylate is oxidized with the highly toxic corrosive compound of selenium dioxide to inadequately yield about 39% of a trans-aldehydic ester. Thereafter, said trans-aldehydic ester is oxidized with oxygen to yield about 35% of the cyclopropanecarboxylic acid compound. As such, the process described by Matsui et al. insufficiently yields about 14% of the cyclopropanecarboxylic acid compound. Further, the process needs troublesome work up operations of a poisonous selenium compound, which is a by-product from selenium dioxide.
Sugiyama et al. (Agric. Biol. and Chem., Vol. 36, pages 565 to 569, 1972) describes a process of producing a cyclopropanecarboxylic acid compound which is encompassed by the following reaction formula:
The process described by Sugiyama et al. utilizes the olefin synthesis of the Horner-Emmons reaction to yield about 86% of E and Z isomers of the cyclopropanecarboxylic acid compound. Such an olefin synthesis reaction also produces problematic phosphorous compounds, which often cause environmental problems when disposed with water sewage.
SUMMARY OF THE INVENTION
The instant invention provides efficient processes of producing cyclopropanecarboxylate compounds of the following formula (I):
wherein, R
1
represents a hydrogen atom, C
1-5
alkyl group, C
1-5
haloalkyl group, C
1-3
alkoxy C
1-3
alkyl group, benzyl group, methoxybenzyl group, phenacyl group, 2-tetrahydrofuranyl group, 2-tetrahydropyranyl group or alcohol moiety of a pyrethroid compound and R
2
represents a hydrogen atom, C
1-10
alkyl group, C
1-10
haloalkyl group, C
3-10
alkenyl group, C
3-10
haloalkenyl group, C
3-10
alkynyl group, C
3-10
haloalkynyl group or benzyl group. Such processes efficiently produce the cyclopropanecarboxylate compounds by utilizing industrially easily available reagents to produce a high yield of the desired cyclopropanecarboxylate compounds of formula (I). In this regard, the processes of the instant invention avoid utilizing selenium dioxide or phosphorous compounds in producing said cyclopropanecarboxylate compounds, relative to the Horner-Emmons reaction or Matsui et al. process.
The instant invention fulfills to be efficient in producing cyclopropanecarboxylate compounds by providing a process which comprises reacting a cyclopropanecarbaldehyde compound of the following formula (II):
wherein R
1
represents the same as above, with a dicarboxylate compound of the following formula (III):
wherein R
2
represents the same as above, in the presence of at least one secondary amine chosen from piperidine, morpholine, pyrrolidine, diethylamine and N-methylethanolamine.
DETAILED DESCRIPTION OF THE INVENTION
The processes of the instant invention typically produce cyclopropanecarboxylate compounds which are encompassed by the following formula (I):
wherein, R
1
represents a hydrogen atom, C
1-5
alkyl group, C
1-5
haloalkyl group, C
1-3
alkoxy C
1-3
alkyl group, benzyl group, methoxybenzyl group, phenacyl group, 2-tetrahydrofuranyl group, 2-tetrahydropyranyl group or alcohol moiety of a pyrethroid compound and R
2
represents a hydrogen atom, C
1-10
alkyl group, C
1-10
haloalkyl group, C
3-10
alkenyl group, C
3-10
haloalkenyl group, C
3-10
alkynyl group, C
3-10
haloalkynyl group or benzyl group. Preferably, as R
1
in formula (I), the C
1-5
alkyl group is a methyl group, ethyl group, t-butyl group or the like, the C
1-5
haloalkyl group is a 2,2,2-trichloroethyl group, 2-chloroethyl group or the like, the C
1-3
alkoxy C
1-3
alkyl group is a methoxymethyl group, ethoxyethyl group or the like, the methoxybenzyl group is a p-methoxybenzyl group or the like, the alcohol moiety of a pyrethroid compound is a 3-phenoxybenzyl group, 5-benzyl-3-furylmethyl group, 2-methyl-4-oxo-3-(2-propynyl)-2-cyclopentenyl group, 2-methyl-4-oxo-3-(2-propenyl)-2-cyclopentenyl group, N-(3,4,5,6-tetrahydrophthalimido)methyl group, N-(3,4-dimethylmaleimido)methyl group or the like. R
1
is not limited thereto, but t-butyl is the most preferable group because the easiness of hydrolysis. Further, preferably as R
2
in formula (I), the C
1-10
alkyl group is a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, iso-butyl group, sec-butyl group or the like, the C
1-10
haloalkyl group is a 2,2,2-trifluoroethyl group, bis(trifluoromethyl)methyl group or the like, the C
3-10
alkenyl group is a 2-propenyl group or the like, the C
3-10
haloalkenyl group is a 3-chloro-2-propenyl group or the like, the C
3-10
alkynyl group is a 2-propynyl group or the like, the C
3-10
haloalkynyl group is a 3-iodo-2-propynyl group or the like, but R
2
is not limited thereto. The cyclopropanecarboxylate compounds of formula (I), which are produced by the processes of the instant invention, can be utilized as active ingredients of pesticides or to produce specified active ingredients of pesticides.
The processes of the instant invention react the cyclopropanecarbaldehyde compound of formula (II) with the dicarbonate compound of formula (III), in the presence of the specific secondary amine, namely piperidine, morpholine, pyrrolidine, diethylamine or N-methylethanolamine. The range of the reaction temperature for the reaction is usually 20 to 160° C., preferably 60 to 120° C. Further, the range of the reaction time period is usually 0.5 to 100 hours, preferably 1 to 72 hours.
In addition, the processes of the instant invention are usually performed within a solvent. Illustrative and non-limiting examples of the solvents include nitrogen-containing heterocycles such as pyridine and picoline; aliphatic hydrocarbons such as hexane, heptane, ligroin and petroleum ether; aromatic hydrocarbons such as benzene, toluene and xylene; halogenated hydrocarbons such as chlorobenzene and dichlorobenzene; ketones such as methyl isobutyl ketone; ethers such as diethyl ether, diisopropyl ether, 1,4-dioxane, tetrahydrofuran, ethylene glycol dimethyl ether and methyl t-butyl ether and the like. In the solvents above, pyridine and toluene are preferable, and pyridine is more preferable.
The amount of the dicarboxylate compound of formula (III) utilized in the instant processes is usually 1 to 10 moles, preferably 1 to 5 moles, based on 1 mole of the cyclopropanecarbaldehyde compound of formula (II), and the amount of the secondary amines described above is a catalytic amount to a large excess. The amount of said secondary amines depends on the kind of the utilized solvent, if a solvent is utilized, and it is usually 1 mole to a large excess based on 1 mole of the cyclopropanecarbaldehyde compound of formula (III) when a non-basic solvent is used. In cases that a basic solvent such as pyridine is used, said amount of secondary amines is usually 0.01 to 5 moles based on 1 mole of the cyclopropanecarbaldehyde compound of formula (II).
After reacting the cyclopropanecarbaldehyde compound of formula (II) and dicarboxylate compound of formula (III) in the presence of the secondary amine specified above, the cyclopropanecarboxylate compounds of formula (I) can be isolated therefrom by utilizing usual work up operations. Typical work up operations include concentration, addition of the reaction mixture to an aqueous solution containing an inorganic acid such as hydrochloric acid and sulfuric acid and extraction with an organic solvent.
It is also possible to obtain purer cyclopropanecarboxylate compounds of formula (I) from the crude product isolated in the above processes by employing well known purifying methods such as distillation, recrystallization or column chromatography.
Further, the utilized secondar
Furukawa Takashi
Matsuo Noritada
Fitch Even Tabin & Flannery
Killos Paul J.
Sumitomo Chemical Company Limited
LandOfFree
Process of producing cyclopropanecarboxylate compounds does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process of producing cyclopropanecarboxylate compounds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process of producing cyclopropanecarboxylate compounds will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2824426