Methods for labeling nucleotides, labeled nucleotides and...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S091100, C435S091200, C436S501000, C436S094000, C436S172000, C436S800000, C530S350000, C536S023100, C536S024300, C536S025300

Reexamination Certificate

active

06338943

ABSTRACT:

The invention relates to methods for labeling nucleotides using linkers (linking moieties between labels and bio-organic molecules, which linkers are based on platinum compounds).
Platinum (coordination) compounds have been considered interesting molecules for a very long time. For a review of these compounds and their uses we refer to Reedijk et al. (Structure and Bonding 67, p.53-89, 1987). Especially Cis-platinum has received a lot of attention as a possible anti-tumour drug. This anti-tumour reactivity of platinum compounds originates from their having at least two reactive groups (preferably cis-oriented towards each other), which make it possible to cross-link DNA molecules, thereby inhibiting the replication of these DNA molecules.
The British patent application 2 148 891 discloses cis-platinum complexes, which are six-coordinated. The platinum is attached to two halogens or hydroxy groups, two additional halogens and to an ethylenediamine derived group, such as 1,2-diamino-2-methylpropane or 1,2-diamino-2-methylbutane. The complexes are said to have an excellent anti-tumor effect.
In the European patent application four-coordinated complexes of platinum to 2,3-alkyl-1,4-butanediamine and two halogens are described for their anti-tumor effect.
Different four-coordinated platinum complexes are described in the European patent application 0 386 243. The complexes comprise a diamine bidentate ligand and two 2-arylalkanoic acid or 3-aryl-2-oxoalkanoic acid ligands. These complexes are stated to have a strong growth inhibiting action on certain leukemia cells and are used for their oncostatic activity.
U.S. Pat. No. 4,207,416 discloses ethylenediamine-platinum(II) 2,4-dioxopyrimidine complexes as having a high anti-tumor activity and low mammalian toxicity.
A different use of platinum (coordination) compounds has been disclosed in PCT application (WO92/01699) wherein a platinum compound having only two reactive moieties (denominated as leaving groups therein) is reacted with a fluorescein to obtain a labeled platinum compound which can bind (non-covalently) to a nucleic acid, preferably at the N-7 position of a guanine residue.
Several methods for labeling nucleotides have been described in the literature. For a long time, the standard method has been to use radioactive isotope labeling. However, there are a number of problems associated with the use of radioisotopes, such as potential health hazards, disposal problems and instability problems.
In order to overcome these problems, Dale et al., Biochemistry, 14, (1975), 2447-2457, have proposed to use direct covalent mercuration as a labeling technique for nucleotides and polynucleotides. It was found, that cytosine and uracil may be mercurated at their C5-position under mild conditions. Further, Gebeyehu et al., Nucleic Acids Research, 15, (1987), 4513-4534, have reported that adenine and cytosine may be labeled with biotin derivatives through an aliphatic linker of from 3 to 17 atoms.
A major drawback of these known methods is that they are not suitable for labeling all different nucleotides. For instance, Dale et al. reported that their covalent mercuration method leads to negative results for adenine, thymine and guanine bases. In some cases, for example when only a few residues of a certain nucleotide are present in a certain nucleic acid or when the terminating nucleotide residue of a nucleic acid has to be labeled, it is desired to have at one's disposal a method for labeling any nucleotide residue.
The present invention provides such a method. The method for labeling nucleotides of the invention comprises the steps of:
reacting a reactive moiety of a linker of the formula
 wherein X represents any stabilizing bridge and wherein A and B represent the same or different reactive moieties, with an electron donating moiety of a spacer, which spacer comprises a chain having at least four atoms and at least one heteroatom in the chain, which spacer further comprises said electron donating moiety at one end of the chain and a reactive moiety at the other end of the chain;
reacting the reactive moiety of said spacer with a label;
reacting the other reactive moiety of said linker with a nucleotide.
According to the invention, the linker may first be attached to the nucleotide and then to the spacer, or vice versa and the spacer may first be coupled to the label and then to the linker or vice versa.
The reactive moiety of the spacer may be any reactive moiety that will enable the reaction between the spacer and the label in such a manner that a labeling moiety comprising a label and a spacer is formed, which labeling moiety is sufficiently stable.
The main purpose for labeling nucleotides is that these labeled nucleotides can be incorporated in nucleic acid molecules. Modified nucleotides, especially those wherein a (bulky) label is attached to the nucleotide, are often built-in into nucleic acids with a much lower efficiency. The methods according to the invention result in labeled nucleotides which are built-in into nucleic acids with a higher efficiency than the labeled nucleotides available to date. This is probably due to the selection of the spacers according to the invention in combination with the platinum-based linkers according to the invention.
The label to be used according to the invention is not critical. In principle all labels which can be attached to a nucleotide and are employed to date can be used. These labels may be radioactive labels, enzymes (which need reaction with a substrate to be detected), specific binding pairs components such as avidin, streptavidin or biotin, biocytin, iminobiotin, colloidal dye substances, fluorochromes (rhodamin, etc.), reducing substances (eosin, erythrosin, etc.), (coloured) latex sols, digoxigenin, metals (ruthenium), metal sols or other particulate sols (selenium, carbon and the like), dansyl lysin, Infra Red Dyes, coumarines (amino methyl coumarine), antibodies, protein A, protein G, etc. The invention has most benefits with bulkier labels such as biotin, avidin, streptavidin, digoxygenin or a functional equivalent thereof.
The invention is not limited to nucleotides or nucleosides as such; derivatives and functional equivalents are also included. The usual nucleotides adenine, thymidine, cytosine, guanine and uridine are preferred. Especially the purines are preferred which have a very good incorporation rate.
For coupling of the spacer to the platinum linker an electron donating moiety is required. In a preferred method the electron donating moiety is an amine or a thiolate anion, which have both proven to be very succesful. It was found that aromatic amines, such as imidazoles or purines, are capable of forming very strong bonds to platinum and thus are very suitable for use as the electron donating moiety.
The spacer is an important aspect of the present invention; it provides the easiest coupling between label and linker. For avoiding steric hindrance in incorporation of the nucleotide into the nucleic acid it should at least be four atoms long, preferably it is at least four carbon atoms long and has at least one heteroatom in that carbon chain. A heteroatom confers a certain amount of rigidity on the spacer. This rigidity provides an additional assurance that steric factors will not obstruct a convenient linking of a nucleotide and a label. It is preferred that at least one heteroatom is an oxygen atom, which positively effects the hydrophilicity of the spacer.
Preferably, the spacer comprises no more than 20 carbon atoms in the chain, which is preferably an essentially non-branched chain, thus causing no steric hindrance. The reason for this will be clear.
A highly preferred spacer is 1,8-diamino-3,6-dioxaoctane, herein referred to as Dadoo. Dadoo is a very flexible compound with a distal primary amine group and a size that makes it very suitable for use as spacer according to the invention.
Another highly preferred spacer of the invention is an oligolysine or a polylysine. Due to their structure and conformation, these molecules create the most convenie

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for labeling nucleotides, labeled nucleotides and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for labeling nucleotides, labeled nucleotides and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for labeling nucleotides, labeled nucleotides and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2820611

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.