Off-board station and an electricity exchanging system...

Prime-mover dynamo plants – Miscellaneous – Drive gearing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S010000, C429S010000

Reexamination Certificate

active

06380637

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates generally to the field of propulsion systems. In particular, the invention concerns an on-board fuel cell system for mobile vehicles such as trains, marine vessels, automobiles, motorcycles, motorbikes, and other mobile means of transportation.
As concerns surrounding traditional power sources persist, investigation into alternative means of power generation are becoming increasingly important. In particular, environmental and political concerns associated with combustion-based energy systems cannot be ignored. In an effort to reduce dependence on these types of power supplies and methods, an ever increasing interest has arisen in devices capable of generating electricity by consuming fuels without requiring combustion.
In addition to being utilized for the generation of electricity, however, combustion processes are most commonly used to power means of transportation such automobiles, trains, or marine vessels. Motor vehicles alone are among the chief contributors to pollution problems associated with combustion of fuel. Hence, while alternative power sources such as nuclear and hydroelectric systems may be suitable for large scale electric utilities, they do not present an ideal solution to the problems associated with powering means of transportation such as motor vehicles.
Alternatives to internal combustion engine powered motor vehicles have included various types of electric vehicles. Electric vehicles are well known in the art. Typical electric vehicles are powered by nickel-cadmium batteries which drive electric motors of anywhere from twenty to 100 horsepower. The batteries are generally rechargeable by stationary direct-current (dc) power supplies. A problem with known systems, however, is that they require constant recharging and offer limited range between required recharging stops.
Known systems are also expensive. Solar rechargeable systems, such as are available from Solectria of Arlington, Massachusetts, represent one attempt to increase the travel range and control the cost of electric motor vehicles. Drawbacks associated with the solar generation of electricity, however, include its usefulness being limited to clear weather and daylight hours, and the expense of the vehicle.
Fuel cells, therefore, have been explored as a means for powering electric vehicles and reducing the constant need to recharge the vehicle from off-board sources. Fuel cells electrochemically convert fuel, such as hydrocarbon fuel, to electricity. Typically, a combustion reaction is not involved.
A drawback associated with prior art fuel cell systems, however, is that they are not economically viable for applications in which the power rating of the fuel cell must meet propulsion demands. In motor vehicle applications, for example, a fuel cell system designed to provide sufficient power required by the vehicle for cruising, let alone for peak surge, would be prohibitively expensive. While various known systems have attempted to exploit the advantages of designating a surge battery to meet peak demand in motor vehicle applications, none has satisfactorily overcome the economic problems.
Another general problem that has assisted in preventing the widespread implementation of electric vehicles is the restrictions on vehicle range created by the finite charge of the vehicle battery. Currently, selected dedicated charging stations do not exist that allow an operator of the electric vehicle to stop and exchange energy therewith on an as needed basis.
It is thus an object of the invention to provide a system which has a range comparable with that of traditional combustion engines without requiring excessively frequent stops, and interruptive recharging from off-board sources.
It is another object of the invention to provide an economically feasible system for powering a motor vehicle which can accommodate typical motor vehicle surge and range demands.
It is yet another object of the invention to provide a fuel-cell powered vehicle that is capable of generating power for off-board consumption.
It is still another object of the invention to provide an electricity exchanging system for enabling the off-board supply of power from the vehicle to the system, or enabling the on-board loading or receiving of power from the system.
Other general and more specific objects of the invention will in part be obvious and will in part appear from the drawings and description which follow.
SUMMARY OF THE INVENTION
The present invention relates to a power supply system that enhances the economic viability of certain modes of transportation that incorporate fuel cells to generate electricity. Such modes of transportation are referred to herein as mobile vehicle fuel cell power systems, where vehicle, as used herein, refers to all means of transportation, for example, automobiles, electric vehicles, trucks, trains, marine vessels, airplanes and spacecraft, and other vehicles employing a power source to transport one or more people. For example, the power supply system of the present invention provides for the off-board use of the electric power generated by the on-board fuel cell of a mobile vehicle fuel cell power system, such as the fuel cell mounted in an electric car. Off-board use, or use remote from the vehicle, of the electrical power can include delivery of power to a remote site, such as a local residence, for example, the residence of the owner of the vehicle, or to a local utility power grid, or to another mobile vehicle.
The present invention also contemplates the use of a mobile vehicle power system that includes all known and compatible types of mobile vehicles or transportation, such as automobiles, electric vehicles, trucks, trains, marine vessels, airplanes, spacecraft and the like. The mobile vehicle power system employs a power source or generator for converting fuel to electricity. The term generator as used herein is intended to include general types of power sources for supplying energy to a mobile vehicle, such as a diesel engine, fuel cell, internal and external combustion engines, electric motor or generator, battery, and solar cells, as well as gas and steam turbines of micro and macro sizes. The integration of fuel cells with a gas turbine, including both micro and macro gas turbines, is clearly set forth in U.S. Pat. No. 5,693,201, to the assignee hereof, the contents of which are herein incorporated by reference.
Off-board stations are provided for delivery of fuel to the vehicle and for receiving the electrical power generated by the fuel cell, and for supplying electricity off-board of or loading or receiving electricity onto the electric vehicle. The off-board station and the vehicle are appropriately equipped for quick and easy interconnection such that electrical power is drawn from the fuel cell for off-board use. In addition, the off-board station can be equipped to deliver fuel to the vehicle, with similar provisions for the quick interconnection of the vehicle and the off-board station. Vehicles can be considered mobile fuel cell systems that deliver power for off-board use when power from the fuel cells is not required for on-board uses, such as propelling the vehicle. Fuel cells may be incorporated into mobile vehicles in a number of ways. For example, fuel cells can be used in tandem with a gas turbine to propel a vehicle, such as a marine vessel or a train.
The on-board use of the fuel cell need not be limited to, or even involve, propelling the vehicle or vessel. Fuel cells can be used to provide heating, ventilation and air conditioning (HVAC) systems independently of or used in connection with the mobile vehicle power system. For example, a marine vessel can use an on-board fuel cell for on-board HVAC and for the provision of on-board electrical power; off-board uses can include the delivery of electrical power to an off-board station when the vessel is in port.
According to another aspect, the invention can employ from one to many off-board stations. For example, the owner or principal user of an electric vehicle can ha

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Off-board station and an electricity exchanging system... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Off-board station and an electricity exchanging system..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Off-board station and an electricity exchanging system... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2816693

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.