Method for creating perfusable microvessel systems

Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Solid support and method of culturing cells on said solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S325000, C435S397000

Reexamination Certificate

active

08003388

ABSTRACT:
A method for creating networks of perfusable microvessels in vitro. A mandrel is drawn through a matrix to form a channel through the matrix. Cells are injected into the channel. The matrix is incubated to allow the cells to attach inside the channel. The channel is perfused to remove unattached cells to create a parent vessel, where the parent vessel includes a perfusable hollow channel lined with cells in the matrix. The parent vessel is induced to create sprouts into the surrounding matrix gel so as to form a microvessel network. The microvessel network is subjected to luminal perfusion through the parent vessel.

REFERENCES:
patent: 4878908 (1989-11-01), Martin et al.
patent: 5804366 (1998-09-01), Hu et al.
patent: 6503273 (2003-01-01), McAllister et al.
patent: 6592623 (2003-07-01), Bowin et al.
patent: 6642019 (2003-11-01), Anderson et al.
patent: 6893812 (2005-05-01), Woltering
patent: 6989071 (2006-01-01), Kocur et al.
patent: 2002/0150879 (2002-10-01), Woltering et al.
patent: 2002/0177121 (2002-11-01), Woltering et al.
patent: 2003/0138945 (2003-07-01), McAllister et al.
patent: 2003/0138950 (2003-07-01), McAllister et al.
patent: 2003/0171053 (2003-09-01), Sanders
patent: 2004/0044403 (2004-03-01), Bischoff et al.
patent: 2006/0216320 (2006-09-01), Kitazono et al.
patent: 2007/0110962 (2007-05-01), Tien et al.
patent: 2007/0224677 (2007-09-01), Neumann
Nicolas L'Heureux et al.,“A Completely biological tissue-engineered human blood vessel,” The FASEB Journal. vol. 12 (1), pp. 47-56, Jan. 1998.
Antonio Migliore et al. “Controlled in vitro growth of cell microtubes: towards the realisation of artificial microvessels,” Biomed Microdevices. vol. 10, pp. 81-88, Aug. 9, 2007.
Akhtar N, Dickerson EB, Auerbach R. 2002. The sponge/Matrigel angiogenesis assay. Angiogenesis 5:75-80.
Algire GH, Chalkley HW, Legallais FY, Park HD. 1945. Vascular reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J Natl Cancer Inst 6:73-85.
Andrade SP, Machado RD, Teixeira AS, Belo AV, Tarso AM, Beraldo WT. 1997. Sponge-induced angiogenesis in mice and the pharmacological reactivity of the neovasculature quantitated by a fluorimetric method. Microvasc Res 54:253-261.
Arthur WT, Vernon RB, Sage EH, Reed MJ. 1998. Growth factors reverse the impaired sprouting of microvessels from aged mice. Microvasc Res 55:260-270.
Ausprunk DH, Knighton DR, Folkman J. 1974. Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. Dev Biol 38:237-248.
Clark ER, Clark EL. 1939. Microscopic observations on the growth of blood capillaries in the living mammal. Am J Anat 64:251-301.
Davis GE, Camarillo CW. 1996. An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res 224:39-51.
Elsdale T, Bard J. 1972. Collagen substrata for studies on cell behavior. J Cell Biol 54:626-637.
Feder J, Marasa JC, Olander JV. 1983. The formation of capillary-like tubes by calf aortic endothelial cells grown in vitro. J Cell Physiol 116:1-6.
Fishman JA, Ryan GB, Karnovsky MJ. 1975. Endothelial regeneration in the rat carotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening. Lab Invest 32:339-351.
Folkman J, Haudenschild C. 1980. Angiogenesis in vitro. Nature 288:551-556.
Folkman J, Haudenschild CC, Zetter BR. 1979. Long-term culture of capillary endothelial cells. Proc Natl Acad Sci U S A 76:5217-5221.
Gimbrone MA, Jr. 1976. Culture of vascular endothelium. In: Prog Hemost Thromb. p. 1-28.
Gimbrone MA, Jr., Cotran RS, Folkman J. 1974a. Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol 60:673-684.
Gimbrone MA, Jr., Cotran RS, Leapman SB, Folkman J. 1974b. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst 52:413-427.
Greenblatt M, Shubi P. 1968. Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J Natl Cancer Inst 41:111-124.
Hoying JB, Boswell CA, Williams SK. 1996. Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cell Dev Biol Anim 32:409-419.
Jaffe EA, Nachman RL, Becker CG, Minick CR. 1973. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745-2756.
Jozaki K, Marucha PT, Despins AW, Kreutzer DL. 1990. An in vitro model of cell migration: evaluation of vascular endothelial cell migration. Anal Biochem 190:39-47.
Koike T, Vernon RB, Gooden MD, Sadoun E, Reed MJ. 2003. Inhibited angiogenesis in aging: a role for TIMP-2. J Gerontol A Biol Sci Med Sci 58:B798-805.
Kubota Y, Kleinman HK, Martin GR, Lawley TJ. 1988. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589-1598.
Kuzuya M, Kinsella JL. 1994. Induction of endothelial cell differentiation in vitro by fibroblast-derived soluble factors. Exp Cell Res 215:310-318.
Maciag T, Kadish J, Wilkins L, Stemerman MB, Weinstein R. 1982. Organizational behavior of human umbilical vein endothelial cells. J Cell Biol 94:511-520.
Madri JA. 1982. Endothelial cell-matrix interactions in hemostasis. Prog Hemost Thromb 6:1-24.
Madri JA, Pratt BM. 1986. Endothelial cell-matrix interactions: in vitro models of angiogenesis. J Histochem Cytochem 34:85-91.
Madri JA, Pratt BM, Tucker AM. 1988. Phenotypic modulation of endothelial cells by transforming growth factor-beta depends upon the composition and organization of the extracellular matrix. J Cell Biol 106:1375-1384.
Madri JA, Stenn KS. 1982. Aortic endothelial cell migration. I. Matrix requirements and composition. Am J Pathol 106:180-186.
Manoussaki D, Lubkin SR, Vernon RB, Murray JD. 1996. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor 44:271-282.
Marx M, Perlmutter RA, Madri JA. 1994. Modulation of platelet-derived growth factor receptor expression in microvascular endothelial cells during in vitro angiogenesis. J Clin Invest 93:131-139.
Merwin JR, Anderson JM, Kocher O, Van Itallie CM, Madri JA. 1990. Transforming growth factor beta 1 modulates extracellular matrix organization and cell-cell junctional complex formation during in vitro angiogenesis. J Cell Physiol 142:117-128.
Montesano R, Orci L. 1985. Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42:469-477.
Montesano R, Orci L, Vassalli P. 1983. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 97:1648-1652.
Montesano R, Pepper MS, Orci L. 1993. Paracrine induction of angiogenesis in vitro by Swiss 3T3 fibroblasts. J Cell Sci 105 ( Pt 4):1013-1024.
Mori M, Sadahira Y, Kawasaki S, Hayashi T, Notohara K, Awai M. 1988. Capillary growth from reversed rat aortic segments cultured in collagen gel. Acta Pathol Jpn 38:1503-1512.
Nehls V, Drenckhahn D. 1995. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res 50:311-322.
Nehls V, Herrmann R. 1996. The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc Res 51:347-364.
Neumann T, Nicholson BS, Sanders JE. 2003. Tissue engineering of perfused microvessels. Microvasc Res 66:59-67.
Nicosia RF, Bonanno E, Smith M, Yurchenco P. 1994a. Modulation of angiogenesis in vitro by laminin-entactin complex. Dev Biol 164:197-206.
Nicosia RF, Bonanno E, Villaschi S. 1992. Large-vessel endothelium switches to a microvascular phenotype during angiogenesis in collagen gel culture of rat aorta. Atherosclerosis 95:191-199.
Nicosia RF, Nicosia SV, Smith M. 1994b. Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for creating perfusable microvessel systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for creating perfusable microvessel systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for creating perfusable microvessel systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2774265

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.