Polynucleotide separations on polymeric separation

Liquid purification or separation – Processes – Liquid/liquid solvent or colloidal extraction or diffusing...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S656000, C210S198200, C435S006120, C536S025400

Reexamination Certificate

active

06309549

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to the separation of polynucleotides using non-polar separation surfaces, such as the surfaces of polymeric beads and surfaces within molded monoliths, which are substantially free from contamination with multivalent cations.
BACKGROUND OF THE INVENTION
Separations of polynucleotides such as DNA have been traditionally performed using slab gel electrophoresis or capillary electrophoresis. However, liquid chromatographic separations of polynucleotides are becoming more important because of the ability to automate the analysis and to collect fractions after they have been separated. Therefore, columns for polynucleotide separation by liquid chromatography (LC) are becoming more important.
High quality materials for double stranded DNA separations previously have been based on polymeric substrates disclosed in U.S. Pat. No. 5,585,236, to Bonn, et al. (1996), which showed that double-stranded DNA can be separated on the basis of size with selectivity and performance similar to gel electrophoresis using a process characterized as reverse phase ion pairing chromatography (RPIPC). However, the chromatographic material described was limited to nonporous beads substituted with alkyl groups having at least 3 carbons because Bonn, et al. were unsuccessful in obtaining separations using polymer beads lacking this substitution. Additionally, the polymer beads were limited to a small group of vinyl aromatic monomers, and Bonn et al. were unable to effect double stranded DNA separations with other materials.
A need continues to exist for chromatographic methods for separating polynucleotides with improved separation efficiency and resolution.
SUMMARY OF THE INVENTION
Accordingly, one object of the present invention is to provide a chromatographic method for separating polynucleotides with improved separation and efficiency.
Another object of the present invention is to provide a method for separating polynucleotides using nonporous polymer separation media, such as beads or monoliths (e.g., rods), having non-reactive, non-polar surfaces.
It is another object of this invention to provide the chromatographic separation of polynucleotides using nonporous polymeric separation media made from a variety of different polymerizable monomers.
It is a further object of this invention to provide the chromatographic separation of polynucleotides using polymeric separation media which can be unsubstituted, methyl-substituted, ethyl-substituted, hydrocarbon-substituted, or hydrocarbon polymer-substituted.
Yet another object of the present invention is to provide improved polymer separation media by including steps to remove contamination occurring during the manufacturing process.
Still another object of the invention is to provide a method for separating polynucleotides using a variety of different solvent systems.
These and other objects which will become apparent from the following specification have been achieved by the present invention.
In one aspect, the invention is a method for separating a mixture of polynucleotides by applying a mixture of polynucleotides having up to 1500 base pairs to a polymeric separation medium having non-polar surfaces which are substantially free from contamination with multivalent cations, and eluting the mixture of polynucleotides. The preferred surfaces are nonporous. The non-polar surfaces can be enclosed in a column. In the preferred embodiment, precautions are taken during the production of the medium so that it is substantially free of multivalent cation contaminants and the medium is treated, for example by an acid wash treatment and/or treatment with multivalent cation binding agent, to remove any residual surface metal contaminants. The preferred separation medium is characterized by having a DNA Separation Factor (defined hereinbelow) of at least 0.05. The preferred separation medium is also characterized by having a Mutation Separation Factor (as defined hereinbelow) of at least 0.1. In the preferred embodiment, the separation is made by Matched Ion Polynucleotide Chromatography (MIPC, as defined hereinbelow). Examples of non-polar surfaces include the surfaces of polymer beads and the surfaces of interstitial spaces within a polymeric monolith. The elution step preferably uses a mobile phase containing a counterion agent and a water-soluble organic solvent. Examples of a suitable organic solvent include alcohol, nitrile, dimethylformamide, tetrahydrofuran, ester, ether, and mixtures of one or more thereof, e.g., methanol, ethanol, 2-propanol, 1-propanol, tetrahydrofuran, ethyl acetate, acetonitrile. The most preferred organic solvent is acetonitrile. The counterion agent is preferably selected from the group consisting of lower alkyl primary amine, lower alkyl secondary amine, lower alkyl tertiary amine, lower trialkyammonium salt, quatemary ammonium salt, and mixtures of one or more thereof. Non-limiting examples of counterion agents include octylammonium acetate, octadimethylammonium acetate, decylammonium acetate, octadecylammonium acetate, pyridiniumammonium acetate, cyclohexylammonium acetate, diethylammonium acetate, propylethylammonium acetate, propyldiethylammonium acetate, butylethylammonium acetate, methylhexylammonium acetate, tetramethylammonium acetate, tetrapropylammonium acetate, tetrabutylammonium acetate, dimethydiethylammonium acetate, triethylammonium acetate, tripropylammonium acetate, tributylammonium acetate, tetraethylammonium acetate, tetrapropylammonium acetate, tetrabutylammonium acetate, and mixtures of any one or more of the above. The counterion agent includes an anion, e.g., acetate, carbonate, bicarbonate, phosphate, sulfate, nitrate, propionate, formate, chloride, perchlorate, or bromide. The most preferred counterion agent is triethylammonium acetate or triethylammonium hexafluoroisopropyl alcohol.
One embodiment of the invention provides a method for separating a mixture of polynucleotides, comprising applying a mixture of polynucleotides having up to 1500 base pairs to polymeric separation beads having non-polar surfaces which are substantially free from contamination with multivalent cations, and eluting said mixture of polynucleotides. In a particular embodiment of the separation medium, the invention provides a method for separating a mixture of polynucleotides comprising flowing a mixture of polynucleotides having up to 1500 base pairs through a separation column containing polymer beads which are substantially free from contamination with multivalent cations and having an average diameter of 0.5 to 100 microns, and separating the mixture of polynucleotides. The beads are preferably made from polymers, including mono- and di-vinyl substituted aromatic compounds such as styrene, substituted styrenes, alpha-substituted styrenes and divinylbenzene; acrylates and methacrylates; polyolefins such as polypropylene and polyethylene; polyesters; polyurethanes; polyamides; polycarbonates; and substituted polymers including fluorosubstituted ethylenes commonly known under the trademark TEFLON. The base polymer can also be mixtures of polymers, non-limiting examples of which include poly(styrene-divinylbenzene) and poly(ethylvinylbenzene-divinylbenzene). The polymer can be unsubstituted, or substituted with a hydrocarbon such as an alkyl group having from 1 to 1,000,000 carbons. In a preferred embodiment, the hydrocarbon is an alkyl group having from 1 to 24 carbons. In more preferred embodiment, the alkyl group has 1-8 carbons. The beads preferably have an average diameter of about 1-5 microns. In the preferred embodiment, precautions are taken during the production of the beads so that they are substantially free of multivalent cation contaminants and the beads are treated, for example by an acid wash treatment, to remove any residual surface metal contaminants. The beads of the invention are characterized by having a DNA Separation Factor of at least 0.05. In a preferred embodiment, the beads are characterized by having a DNA Separation Factor of at least 0.5. Also in a p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Polynucleotide separations on polymeric separation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Polynucleotide separations on polymeric separation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Polynucleotide separations on polymeric separation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2611043

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.