Composition of chemicals for manipulating the behavior of...

Plant protecting and regulating compositions – Plant growth regulating compositions – Plural active ingredients

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C504S307000, C560S129000, C560S190000, C560S191000, C560S203000, C560S204000

Reexamination Certificate

active

06310003

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a composition and procedure for manipulating the behaviour of the orange wheat blossom midge,
Sitodiplosis mosellana
. More importantly, this invention relates to the preparation and use of 2,7-nonanediyl dibutyrate or stereoisomers thereof for manipulating the behaviour of
S. mosellana.
BACKGROUND OF THE INVENTION
The orange wheat blossom midge,
Sitodiplosis mosellana
(SM) (Diptera: Cecidomyiidae), is found around the world wherever wheat is grown. Larvae feed on developing kernels, causing them to shrivel, crack, and deform (1). Grain yield decreases exponentially with the increase in SM larval infestations (2). Damaged kernels are inferior in milling quality and germination capacity (1). SM larval infestations are also correlated with the presence of wheat scab,
Fusarium graminearum,
and glume blotch,
Septoria nordorum
(Berk.), suggesting that SM adults vector fungal spores (3).
Several outbreaks of the SM have been reported in North America since this pest insect became established in Quebec in 1828. In recent years, significant damage to wheat crops occurred in Saskatchewan, Manitoba, Alberta, North Dakota, and Minnesota. In 1983, for example, SM reached epidemic populations in northeastern Saskatchewan, causing revenue losses of >$ 30 million (2). Since then, SM populations have spread across the Northern Plains including most of the wheat-growing area. In 1995, yield losses in Saskatchewan reached 30% in many fields and averaged 15% in the Red River Valley of North Dakota and Minnesota (4). In the same year, total losses exceeded $ 50 million in Manitoba and $ 100 million in Saskatchewan. In North Dakota in 1995, wheat producers lost an estimated 7 million bushels in wheat yield, and $ 30 million in gross revenue due to SM (5).
Cultural, biological and chemical control tactics are employed to manage SM populations. Cultural practices include crop rotation to non-preferred crops, seeding early or late (6), and selecting early maturing varieties. Wheat cultivars resistant to SM would result in long-term reduction of damage (7, 8), but are not yet available. Various biological control agents, such as spiders, mites and hymenopterous parasitoids, prey upon SM populations, but significant crop damage still occurs (9, 10). Insecticides are the current means of controlling SM populations. A single, well-timed application of an insecticide suppresses SM populations, improving crop yield and increasing the farmers' profit (11, 12).
Monitoring of wheat fields is required to identify SM infestations and to take appropriate control measures. Current assessments of SM populations are time-consuming, tedious and not user-friendly. These tactics include captures of adult SM in colored traps, and recording numbers of SM eggs, larvae or adults on heads of wheat (13, 14, 15). Colored traps afford many by-catches which are not readily distinguished from SM. Counts of eggs are laborious and require the use of a stereomicroscope. Counts of adult SM on wheat heads are confounded by the presence of “midge look-a-likes”. Uncertain about their SM population assessment, wheat producers often decide to apply unnecessary and costly “insurance sprays”. Moreover, ill-timed insecticide applications are not cost-effective, environmentally unacceptable, and adversely affect biological control agents.
Between 1992-3, evidence was presented that female SM produce a sex pheromone to attract male SM (16, 17). This document describes the identification, synthesis and field testing of the SM pheromone.
SUMMARY OF THE INVENTION
Gas chromatographic-electroantennographic detection (GC-EAD) analyses of pheromone gland extract of female orange wheat blossom midge,
Sitodiplosis mosellana
(SM), revealed a single antennally active compound. It was identified as 2,7-nonanediyl dibutyrate. In experiments in wheat fields near Saskatoon and Neilburg, Saskatchewan, Canada, traps baited with stereoisomeric 2,7-nonanediyl dibutyrate or (2S,7S)-2,7-nonanediyl dibutyrate captured significant numbers of male SM.
The essence of the invention is the preparation and use of stereoisomeric 2,7-nonanediyl dibutyrate or (2S,7S)-2,7-nonanediyl dibutyrate for manipulating the behavior of the SM. The invention is directed to the preparation and use of chemicals for manipulating the behavior of SM, said chemical composition comprising (2S,7S)-, (2S,7R)-, (2R,7S)- and (2R,7R)-2,7-nonanediyl dibutyrate.
The chemicals' proportions can cover all possible combinations and ratios. The composition can be contained in, and released from, slow release devices. Pheromone release devices can be held in traps to capture attracted male SM. Pheromone release devices, or micro-encapsulated pheromone, can also be distributed in wheat fields to prevent male SM from locating, and mating with, female SM.
The invention is directed to a composition for manipulating the behaviour of orange wheat blossom midge,
Sitodiplosis mosellana,
said composition comprising: a chemical selected from one or more of the group consisting of: (2S,7S)2,7-nonanediyl dibutyrate, (2S,7R)-2,7-nonanediyl dibutyrate, (2R,7S)-2,7-nonanediyl dibutyrate and (2R,7R)-2,7-nonanediyl dibutyrate. The chemicals can be micro-encapsulated.
The invention can include a trap that captures attracted male
S. mosellana,
or a release device, containing a composition according to the invention.
The invention is also directed to a method of preventing male
S. mosellana
from locating, and mating with female
S. mosellana
comprising using a pheromone containing release device, a trap containing a pheromone release device or micro-encapsulated pheromone, said pheromone being a chemical selected from one or more of the group consisting of (2S,7S)-2,7-nonanediyl dibutyrate, (2S,7R)2,7-nonanediyl dibutyrate, (2R,7S)-2,7-nonanediyl dibutyrate and (2R,7R)-2,7-nonanediyl dibutyrate.
The invention also pertains to a process for preparing a mixture of the four stereoisomers of 2,7-nonanediyl dibutyrate which comprises benzylating racemic 4-pentyne-2-ol to yield 2-O-benzyl-4-pentyne, treating 2-O-benzyl-4-pentyne with butyl lithium and butylene epoxide to yield 2-O-benzyl-4-nonyne-2,7-diol, hydrogenating 2-O-benzyl-4-nonyne-2,7-diol to yield 2,7-nonanediol and esterifying 2,7 nonanediol to yield 2,7-nonanediyl dibutyrate.
The invention also pertains to a process for preparing four optically active stereoisomers of 2,7-nonanediyl dibutyrate comprising: (a) coupling S-propylene oxide with Grignard reagent derived from 5-bromo-1-pentene to yield (2S)-8-octen-2ol, oxidizing (2S)-8-octen-2-ol with m-chloroperoxybenzoic acid to yield (7S)-1,2-epoxy-7-hydroxyoctane, kinetically resolving (7S)-1,2-epoxy-7-hydroxyoctane with (R,R)-N,N-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt (II) and water to yield (2R,7S)-1,2-epoxy-7-hydroxyoctane, opening the epoxy ring of (2R,7S)1,2-epoxy-7-hydroxyoctane with methylmagnesium bromide in the presence of CuI to yield (2S,7S)-2,7-nonanediol, esterifying (2S,7S)-2,7-nonanediol to yield (2S,7S)-2,7-nonanediyl dibutyrate; and (b) when the remaining three stereoisomers are desired, synthesizing respective epoxide intermediates from (S)- or (R)-propylene oxide and 5bromo-1-pentene, kinetically resolving these intermediates, opening their epoxy rings and esterifying the diols.
The invention is also directed to a method of alleviating wheat damage in a wheat field caused by
Sitodiplosis mosellana
which comprises deploying in the field a release device or micro-encapsulation containing a chemical selected from one or more of the group consisting of: (2S,7S)-2,7-nonanediyl dibutyrate, (2S,7R)-2,7-nonanediyl dibutyrate, (2R,7S)-2,7-nonanediyl dibutyrate and (2R,7R)-2,7-nonanediyl dibutyrate.
The invention also pertains to a method of diagnosing the population density of
Sitodiplosis mosellana
in a wheat field which comprises deploying in the field a trap baited with a release device containing a chemical selected from one or more of the group consisting of: (2S,7S)-2,7-nonanediyl dibutyrate, (2

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Composition of chemicals for manipulating the behavior of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Composition of chemicals for manipulating the behavior of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Composition of chemicals for manipulating the behavior of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2607723

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.