Endoscopic microsurgical instruments

Surgery – Instruments – Forceps

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S174000, C600S564000

Reexamination Certificate

active

06322578

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to instruments for performing minimally-invasive surgery, and more specifically, to instruments for performing extremely small-scale, minimally-invasive microsurgical procedures such as coronary artery bypass grafting.
BACKGROUND OF THE INVENTION
Minimally-invasive surgical techniques, such as thoracoscopy, laparoscopy, pelviscopy, endoscopy, and arthroscopy, minimize patient trauma by providing access to interior body cavities through very small incisions or through percutaneous cannulae known as trocar sleeves. To perform a surgical procedure, elongated, low-profile instruments are introduced into a body cavity through these incisions or trocar sleeves. Visualization is facilitated by percutaneous visualization devices known as laparoscopes, endoscopes, arthroscopes, and the like, which typically consist of a video camera configured for introduction through a small incision or trocar sleeve to allow observation of the body cavity on a video monitor. By obviating the need for a large, open incision to expose the body cavity, minimally-invasive techniques can significantly reduce the pain, recovery period, morbidity and mortality rates, and cost of open surgical procedures without a sacrifice in efficacy.
In recent years, minimally-invasive techniques have been developed to facilitate the performance of a variety of surgical procedures on organs and ducts of the abdominal and pelvic cavities. Well-known examples of such procedures include laparoscopic cholecystectomy, laparoscopic appendectomy, laparoscopic hysterectomy, and laparoscopic hernia repair.
A particularly important milestone in minimally-invasive surgery has been attained with the development of thoracoscopic techniques for surgery of the heart and great vessels. Such techniques are described in U.S. Pat. No. 5,452,733, assigned to the assignee of the present application, the complete disclosure of which patent is incorporated herein by reference. The U.S. Pat. No. 5,452,733 describes thoracoscopic techniques for performing coronary artery bypass grafting (CABG) which eliminate the need for the sternotomy or other form of gross thoracotomy required by conventional, open surgical techniques. In thoracoscopic CABG, an arterial blood source such as the internal mammary artery (IMA) is dissected from its native location, transected, and prepared for attachment to an anastomosis site on a target coronary artery, commonly the left anterior descending coronary artery (LAD). A portion of the target coronary artery containing the anastomosis site is then dissected away from the epicardium, and a small incision is made in the arterial wall. The distal end of the arterial blood source (e.g. IMA) is then anastomosed over the incision in the target coronary artery, usually by suturing. Each of these steps is performed by means of instruments introduced through small incisions or trocar sleeves positioned within intercostal spaces of the rib cage, under visualization by means of an endoscope or other percutaneous visualization device.
Because the CABG procedure requires complex microsurgery to be carried out on extremely small body structures, surgical instruments designed for laparoscopic and other minimally-invasive applications are not generally suitable for performing thoracoscopic CABG. Most laparoscopic procedures, for example, target body structures which are quite large in comparison to the coronary vessels, and do not require the high degree of precision required by microsurgeries such as CABG. Accordingly, laparoscopic instruments generally have relatively large end-effectors with relatively large ranges of movement, making such instruments ill-suited for use on very small structures like the coronary vessels. In addition, such instruments commonly have finger loops or pistol-type actuators gripped in the user's palm or between the user's thumb and forefinger, limiting the sensitivity and precision with which such instruments can be manipulated and actuated. Such finger loops or pistol-type grips also are limited to a single orientation in the user's hand and cannot be repositioned in the hand to allow better access to a body structure or to change the orientation of the end-effector.
The advent of thoracoscopic CABG and other minimally-invasive microsurgical procedures therefore demands a new generation of microsurgical instruments specifically designed to meet the unique needs of such procedures, These instruments must have a small profile for introduction through small incisions or trocar sleeves, and a length sufficient to reach the heart and other thoracic organs and vessels from various percutaneous access points. The instruments must have end-effectors adapted to perform delicate, high-precision microsurgery on very small vessels, including end-effectors having very small dimensions and very short ranges of motion. The instruments must have actuators that facilitate ergonomic, one-handed actuation with sensitivity and precision, preferably having a stroke which is large enough for comfortable actuation by the fingers and which is reduced to a very short range of motion at the end-effector. Desirably, the actuators will have a configuration which is analogous to surgical forceps or to other types of microsurgical instruments commonly utilized in open surgical procedures, shortening the learning curve required for adoption of minimally-invasive microsurgical techniques.
SUMMARY OF THE INVENTION
This invention provides instruments and methods to facilitate the performance of minimally-invasive microsurgical procedures, and particularly, the performance of thoracoscopic CABG and other procedures on the heart and great vessels. The instruments of the invention facilitate a variety of surgical activities, including application of clips or staples, suturing, incision, transection, dissection, retraction, and manipulation, and are specially adapted for use on extremely small body structures such as the coronary blood vessels.
In a preferred embodiment the instrument comprises first and second relatively movable members, an end-effector coupled to the first and second members so as to move in response to relative movement thereof; and an actuator coupled to the first and second members for imparting relative movement thereto. The actuator is provided with a locking mechanism which locks the position of the first and second members and the end-effector, for example, during use or introduction and removal from the body cavity, or to reduce the risk of inadvertent injury to the patient caused by an open end-effector.
In one preferred embodiment, the relatively moveable members are two shafts and the locking mechanism comprises first and second catches which are engageable to lock the shafts in the desired relative position. The actuator includes two relatively movable components operable to move the shafts to and from the desired relative position, for example, two arms movable toward and away from each other. The first and second catches of the locking mechanism preferably are mounted on the two components of the actuator so as to move toward or away from each other upon actuation of the actuator. Each of the catches is secured to one of the two actuator components by a movable connection so as to be movable relative thereto, for example, a pivoted connection. Actuating the actuator to a first position locks the catches together to fix the first and second shafts in a desired relative position, and further actuating the actuator from the first position unlocks the catches to release the first and second shafts from the desired relative position.
To allow precise microsurgery to be performed on a very small scale, the instruments are adapted to be held in a single hand in a manner analogous to surgical forceps. In a preferred construction, an actuator for the instruments includes a pair of symmetrical, proximally-hinged, forcep-like arms which can be pivoted by the fingers for sensitive and precise actuation of an end-effector. The symmetry of actuation

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Endoscopic microsurgical instruments does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Endoscopic microsurgical instruments, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Endoscopic microsurgical instruments will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2603719

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.