Primary alkanolamides

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From carboxylic acid or derivative thereof

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S339500, C525S420500, C554S103000

Reexamination Certificate

active

06310174

ABSTRACT:

BACKGROUND OF INVENTION
This invention relates to compositions for use as corrosion inhibitors, lubricants and emulsifiers, particularly primary alkanoletheramides made from dimerized or trimerized tall oil fatty acids and from an aminoalkoxyalcohol such as aminoethoxyethanol, and compositions containing fatty acid mono-amides and the primary alkanoletheramides of dimer or trimer acids.
Alkanolamides are used in the metalworking industry as corrosion inhibitors, lubricants and emulsifiers. The industry often uses C10 to C24 fatty acids for production of these amides, including use of tall oil fatty acids (TOFA) which consist mainly of mixtures of saturated, mono-unsaturated and di-unsaturated C18 fatty acids. In the past the industry has typically used amides from secondary alkanolamines due to the tendency for these amides to remain free of precipitated solids during storage. These “clear” liquids have the advantage of being easy to handle and dispense. There now exists a push in the industry to move away from use of secondary alkanolamines due to health concerns. Primary alkanolamines present adequate replacements in many applications. However, fatty amides of primary alkanolamines tend to precipitate out solids at ambient temperatures and in some cases become completely solid. This makes these mono-substituted alkanolamides difficult to handle.
SUMMARY OF INVENTION
This invention provides a solution to one or more of the problems and disadvantages discussed above. The current invention relates to a composition containing an amide of a primary amine that remains clear of suspended solids during storage, making mixtures containing the additive particularly useful to the metalworking industry. The composition contains an amide formed by the condensation of a primary amine and a dimerized or trimerized fatty acid. Preferably, the primary amine is an alkanoletheramine such as of formula H(OA)
a
NH
2
wherein A is independently in each occurrence a diradical of ethyl or propyl and “a” is from 2 to about 30. The dimer and trimer acids are produced by linking two or three monounsaturated acid molecules at the site of unsaturation resulting in loss of unsaturation and various linkages joining the two or three molecules at some point on their fatty carbon chains. The condensation reaction of this acid with aminoethoxyethanol, for instance, produces a molecule with two or three substituted amide functionalities and two to three adjoining fatty acid chains. Advantageously, when added to an amide of a primary alkanolamine and monomeric fatty acid, these molecules are able to prevent crystallization of the amide mixture. Formation of a dimer amide may be represented by the following reaction scheme:
In this scheme, the total number of carbons in the fatty acid may vary widely (each of x, y, t and u may vary from 1 to 25) and in one embodiment is 36. This is but one possible structure arrived at by dimerization and is not intended to be limiting in any way. The product shown is derived from aminoethoxyethanol, but other amines may be employed.
Formation of a trimer amide may be represented by the following reaction scheme:
In this scheme, the total number of carbons in the fatty acid may vary widely (each of x, y, t, u, r and s may vary from 1 to 25) and in one embodiment is 54. This is but one possible structure arrived at by trimerization and is not intended to be limiting in any way. The product shown is derived from aminoethoxyethanol, but other amines may be employed.
In one broad respect, this invention is the reaction product of a mono-amine and a dimerized or trimerized fatty acid. In another broad respect, this invention is a manufacturing process, comprising: contacting an amine and a dimerized or trimerized fatty acid to form a reaction product. In one broad respect, this invention is a primary alkanoletheramide of a dimerized or trimerized fatty acid. In another broad respect, this invention is a composition comprising the reaction product of a primary aminoalkoxyalkanol and a dimerized or a trimerized fatty acid. A representative, non-limiting example of a suitable aminoalkoxyalkanol is aminoethoxyethanol. In another broad respect, this invention is a composition containing a mono-amide made from a primary alkanolamine and a poly-amide made from a dimer or trimer acid and from a primary amine.
In another broad respect, this invention is a composition comprising a compound of formula
wherein each of x, y, t and u may vary from 1 to 25 and wherein R is an alkanol or an ether-alkanol radical.
In another broad respect, this invention is a composition comprising a compound of formula
wherein each of x, y, t, u, r and s may vary from 1 to 25 and wherein R is an alkanol or an ether alkanol radical.
DETAILED DESCRIPTION OF THE INVENTION
Fatty acids (TOFA) used in making the amides of this invention are dimerized or trimerized using known procedures. The fatty acids to be dimerized or trimerized are typically monosaturated and may contain about 8-20 carbon atoms. The fatty acid may be an unsaturated fatty acid such as hypogeic acid, oleic acid, linoleic, elaidic acid, erucic acid, brassidic acid, tall oil fatty acids and the like. In addition, diacids based on these acids may be used.
Among the diacids which may be used are alkylene dicarboxylic acids containing from 2 to about 12 carbon atoms. It is also contemplated within the scope of this invention that aromatic dicarboxylic acids, such as phthalic acid, also may be used. Examples of alkylene dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azaleic acid, sebacic acid, etc. Such dicarboxylic acids may also be substituted by an alkyl, an alkenyl, a cycloalkyl, an hydroxyl, or alkoxyl group as was heretofore described. The unsaturated fatty acids may also be substituted by an alkyl, an alkenyl, a cycloalkyl, an hydroxyl, or alkoxyl group as was heretofore described. Representative general structures of such dimers and trimers are shown above. In general, the dimers and trimers are made by dimerization of unsaturated fatty acids, such as described in “The Dimer Acids,” Edited by Edward C. Leonard (1975). Dimer and trimer acids are available commercially from Henkel Corporation, sold presently as EMPOL™ Dimer and Polybasic Acids.
The amines which can be used in this invention generally are primary amines and may be monoamines, diamines, and other polyamines. The reaction products of this invention are the bis-amides or higher (such as tri-amide) resulting from the reaction of each carboxyl group of the fatty acid with a primary amino group. Monoamines which may be utilized are alkyl amines containing from 2 to about 40 carbon atoms, but preferably from about 5 to about 25 carbon atoms. Examples of suitable alkyl groups include ethyl, propyl, butyl, pentyl, hexyl, hectyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl, tetracosyl, and pentacosyl. Normally the alkyl group is linear; however, branched alkyl groups also may be used but not necessarily with equivalent results. The alkyl group may be either saturated or unsaturated, i.e., the carbonaceous portion may contain one or more olefinic bonds. The aforementioned alkyl groups commonly have their commercial origin in fatty acids, and consequently often are supplied as mixtures. Therefore it is to be understood that amines containing a combination of the aforementioned groups are explicitly within the scope of this invention. It also is contemplated that alkyl groups which are substituted with an hydroxy or alkoxy group or both a hydroxy and alkoxy group are also within the scope of this invention. Alkoxyalkylamines, where the alkoxy portion contains from about 5 to about 18 carbon atoms, may be effectively employed as amines of this invention. Also, aminoalkoxyalkanols of from 4 to 18 carbons may be used, such as aminoethoxyethanol. The aminoalkoxyalkanol may contain multiple alkoxy components (a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Primary alkanolamides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Primary alkanolamides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Primary alkanolamides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2602193

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.