Photochromic curable composition

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C252S586000, C526S289000

Reexamination Certificate

active

06194511

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a photochromic curable composition suited for the production of a photochromic cured product having excellent optical properties such as a high refractive index and a large Abbe's number, having favorable photochromic properties such as a large color density, and having good fatigue resistance, and to a photochromic lens obtained by curing the photochromic curable composition.
2. Prior Art
Photochromism is a phenomenon which is drawing attention in these several years, and stands for a reversible action of a compound; i.e., a compound quickly changes its color when it is irradiated with light containing ultraviolet rays such as of sunlight or light of a mercury lamp, and resumes its initial color when it is no longer irradiated with light and is placed in a dark place. The compound having such a property is called photochromic compound. The compounds having a variety of structures have heretofore been synthesized and proposed.
A photochromic plastic lens is the one that utilizes the photochromism. For example, Japanese Unexamined Patent Publication (Kokai) No. 124790/1991 proposes a photochromic curable composition obtained by dissolving a photochromic compound in a radically polymerizable monomer, and discloses a method of obtaining a photochromic resin by curing the photochromic curable composition. Particularly, this publication teaches the use of the cured product as a photochromic lens. However, many of the cured products taught in these publications have refractive indexes which are not less than 1.55.
It has been desired to provide lenses for spectacles having ever small thicknesses. Therefore, improvement has been forwarded extensively in order to provide a resin that exhibits a high refractive index, and a variety of cured products and monomer compositions have been studied and proposed for producing lenses. However, few studies are concerned to the photochromic lenses having refractive indexes in excess of 1.56, and no technology has been positively developed except the one disclosed in Japanese Unexamined Patent Publication (Kokai) No. 169918/1996. Many styryl compounds have been studied as general highly refractive polymerizable monomers. However, these highly refractive cured products have poor fatigue resistances in the photochromic properties compared to that of the lowly refractive cured products and, besides, have small color densities and are not, hence, utilizable as photochromic lenses. It has further been desired to increase the Abbe's number in order to improve the chromatic aberration of the lenses of the spectacles. In general, however, the Abbe's number decreases with an increase in the refractive index. It is therefore difficult to increase the Abbe's number of the highly refractive plastic lenses for spectacles. Accordingly, it has been desired to provide a sufficiently practicable photochromic curable composition having excellent optical properties such as a high refractive index and a large Abbe's number, and excellent color density and fatigue resistance in the photochromic property.
Japanese Patent No. 2570776 (Japanese Unexamined Patent Publication (Rokai) No. 128966/1989) discloses a sulfur-containing aliphatic acrylic compound that can be cast-polymerized, that gives a cured product having a high refractive index and a large Abbe's number upon the polymerization, and that is expressed by the following formula,
wherein R′ is hydrogen or CH
3
, R″ is —CH
2
CH
2
-, and R″′ is —CH
2
-, —CH
2
CH
2
-, —CH
2
CH
2
CH
2
-, —CH
2
CH
2
CH
2
CH
2
-, —CH
2
CH
2
SCH
2
CH
2
-, or —CH
2
CH
2
OCH
2
CH
2
-.
However, it has not at all been known to use the above-mentioned sulfur-containing compound in combination with a photochromic compound to obtain a photochromic curable composition.
As a photochromic compound, on the other hand, there has been known, for example, a fulgimide compound. The fulgimide compound develops a color of a tone of orange to blue. A chromene compound and a spirooxazine compound have also been known as photochromic compounds. These compounds develop colors of tones of, generally, orange to yellow in the case of a chromene compound and reddish purple to blue in the case of a spirooxazine compound.
It is generally desired that the photochromic lens generally develops a color of a tone of grey, amber or brown. When the above-mentioned compounds are used alone, however, a desired neutral color is not obtained in many cases. An neutral color can be obtained by mixing a chromene compound, a fulgide compound or a fulgimide compound and a spirooxazine compound having different color tones at any composition ratios. For example, Japanese Unexamined Patent Publication (Kokai) No. 124790/1991 discloses a method of obtaining an neutral color by mixing a chromene compound and a fulgimide compound together, and Japanese Unexamined Patent Publication (Kokai) No. 9469/1993 discloses a method of obtaining an neutral color by mixing a chromene compound and a spirooxazine compound together. Furthermore, DE 4325154 teaches developing various neutral colors in addition to grey, amber and brown by mixing a spirooxazine compound, a chromene compound and a fulgimide compound together.
SUMMARY OF THE INVENTION
It has therefore been desired to develop a new technology to compensate for the above-mentioned defects inherent in the prior art. That is, the object of the present invention is to provide a composition suited for the production of a photochromic cured product having excellent optical properties such as a high refractive index and a large Abbe's number, favorable photochromic properties such as a large color density, and good fatigue resistance, as well as a photochromic lens obtained by curing the photochromic curable composition.
The present inventors have conducted keen study concerning the composition for obtaining a photochromic cured product as represented by a photochromic lens having excellent optical properties such as a high refractive index and a large Abbe's number, favorable photochromic properties, a large color density and excellent fatigue resistance. As a result, the inventors have discovered the fact that a photochromic curable composition containing a particular polymerizable monomer is suited for the production of a photochromic cured product that satisfies the above-mentioned properties, and have thus completed the present invention.
According to the present invention, there is provided a photochromic curable composition comprising 100 parts by weight of a polymerizable monomer containing at least 10% by weight of a sulfur-containing (meth)acrylate polymerizable monomer represented by the following general formula (1),
wherein R1, R2 and R3 may be the same or different and are hydrogen atoms or methyl groups, and n is an integer of 1 to 10, and 0.001 to 10 parts by weight of a photochromic compound.
In the photochromic curable composition of the present invention, it is desired that:
1. The sulfur-containing (meth)acrylate polymerizable monomer is:
a bis(2-methacryloyloxyethylthioethyl) sulfide;
a bis(2-acryloyloxyethylthioethyl) sulfide;
a bis(2-methacryloyloxyisopropylthioisopropyl) sulfide;
a bis(2-methacryloyloxyethyl) sulfide; or a 1,2-bis(2-methacryloyloxyethylthio) ethane;
2. The sulfur-containing (meth)acrylate polymerizable monomer is a polymerizable monomer prepared by the ester interchange of a (meth)acrylic acid ester and an alcohol; and
3. The polymerizable monomer comprises:
(A) 100 parts by weight of the sulfur-containing (meth)acrylate polymerizable monomer expressed by the above-mentioned general formula (1);
(B) 1 to 100 parts by weight of an epoxy-containing (meth)acrylate polymerizable monomer represented by the following general formula (2),
wherein R4 and R7 may be the same or different and are hydrogen atoms or methyl groups, R5 and R6 are the same or different alkylene groups having 1 to 4 carbon atoms, which may be substituted with a hydroxyl group, or a gro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Photochromic curable composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Photochromic curable composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photochromic curable composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2592337

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.