Substrate for high frequency integrated circuits

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Including a second component containing structurally defined...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S331000, C428S450000, C257S646000

Reexamination Certificate

active

06183857

ABSTRACT:

This application claims priority under 35 U.S.C. §§119 and/or 365 to 9702346-9 filed in Sweden on Jun. 18, 1997; the entire content of which is hereby incorporated by reference.
The present invention relates to a substrate for building integrated circuits, in particular integrated circuits and components used in integrated circuits which are intended to operate at high frequencies.
BACKGROUND
Common applications within the field of electronic circuits for e.g. use in telecommunication tend to use higher and higher frequencies. Today the frequency range is stretching into the GHz range. At those frequencies the properties of the substrates used for building monolithic integrated circuits become more and more important. Conventionally, semi-insulating substrates based on GaAs have been used for monolithic integrated circuits to be used for processing signals having frequencies within the microwave range, such circuits being called MMIC (=Monolithic Microwave Integrated Circuits) and thus having good signal properties for gigahertz frequencies.
Recently, a similar substrate material called MICROX™ has been proposed by the company Westinghouse for silicon based integrated circuits, see the article by M. H. Hanes et al., “MICROX™—An All-Silicon Technology for Monolithic Microwave Integrated Circuits”, Electron Device Letters, Vol. 14, No. 5, May 1993, pp. 219-221. Silicon wafers of the type Silicon on Insulator, SOI, are used comprising high resistivity substrates having an initial resistivity value of about 10 kohmcm. However, it is difficult to produce silicon having such a high resistivity because of the very low impurity concentration required. Moreover, the very manufacturing process of the integrated circuits and components thereof at the substrate surface may lower this resistivity. Still the proposed material is not as good a semi-insulating material as those materials which can be obtained using GaAs or even InP as base materials, what negatively influences the high frequency characteristics of circuits built from such substrates.
In the paper by Vu Quoc Ho and Takauo Sugano, “Fabrication of Si MOSFET's Using Neutron-lrradiated Silicon as Semi-Insulating Substrate”, IEEE-TED 24 (4), p. 487 (1982), a method is disclosed for obtaining silicon having a very high resistivity by irradiating silicon with neutrons, the produced material having a resistivity that is unstable during processing for producing integrated circuits.
Some semiconductor materials have been found to have semi-insulating properties, where these properties can be explained as derived from precipitates within the materials acting as or creating “buried” barriers having overlapping depletion regions. For semiconductor materials based on GaAs the precipitates were found to be nano-particles of As, see the paper by Warren, A. C.; Woodall, J. M.; Freeouf, J. L.; Grischkowsky, D.; and others, “Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxy”, Applied Physics Letters, 24 Sep. 1990, Vol. 57, No. 13, pp. 1331-1333, and for materials based on InP Cu—In precipitates were found, see the paper by Leon, R.P.; Werner, P.; Eder, C.; Weber, E. R., “Structure and thermal stability of Cu—In precipitates and their role in the semi-insulating behaviour of InP:Cu”, Applied Physics Letters, Nov. 23, 1992, Vol. 61, No. 21, pp. 2545-2547.
SUMMARY
It is an object of the present invention to provide a substrate material suited for common processing methods in the art of integrated circuits based on silicon, in particular suited for manufacturing components which operate at high and very high frequencies, such as within the gigahertz range.
It is a further object of the invention to provide a method of producing a silicon substrate particularly suited for components intended to be operated at high frequencies, but is not restricted to applications using high frequencies and e.g. can be utilised in high voltage devices.
The problem solved by the invention is thus how to provide a silicon substrate for high frequency applications, capable of being produced using standard methods of silicon processing and allowing components to be built in and/at or the surface thereof, also using standard methods of silicon processing, these methods not influencing the basic characteristics of the substrate.
The invention is based on the realization that semi-insulating silicon substrates can be created in a way similar to that used for the III-V-materials, GaAs and InP, as described above, using hetero-junction barriers such as Schottky or pn-hetero-junctions to deplete the silicon material from electric charge carriers, in order to form a material having an extremely high resistivity, comparable to that of semi-insulating GaAs.
Thus, silicon substrates are formed to be used for manufacturing integrated circuits, the substrates having at least one semi-insulating silicon layer formed by including particles having metallic properties and having arbitrary shapes into the layer. The particles can be formed of metals, e.g. W and Mo, metal silicides, e.g. CoSi
x
PtSi
x
WSi
x
and MoSi
x
, or other materials that form hetero-junctions, e.g. SiC, GaN and AIN, in silicon. The particles should be small, normally having diameters of 1-1000 nm, i.e. be in a submicron range, and should be present in such a density that depletion regions from neighbouring particles overlap each other. The lattice formed by the particles can be substantially two dimensional or three dimensional. A method of embedding matrices of tungsten discs of nm-size in GaAs is disclosed in L.-E. Wemersson, N. Carlsson, B. Gustafsson, A. Litwin, and L. Samuelson: “Lateral current-constriction in vertical devices using openings in buried lattices of metallic disc”, Applied Physics Letters, Nov. 10, 1997, Vol. 71, No. 19, pp. 2803-2805. A similar method could possibly also be as used for Si-material.
In U.S. Pat. No. 4,901,121 a semiconductor device comprising a perforated metal silicide layer is disclosed. Such a perforated electrically conductive layer could in some aspects be considered to be equivalent to a layer of electrically conducting particles. However, a semiconductor device comprising such an interior, very well electrically conducting layer is not suited for high-frequency applications since, for electric operation of high frequency, electrical currents will be induced globally in the perforated conducting layer ruining the performance of the semiconductor device. In a layer of particles which are electrically isolated from each other only induced currents can be obtained in the particles resulting in only a very small inductive loss.
Silicon substrates having an interior, stabile semi-insulating layer will obviously be well suited for manufacturing integrated circuits on their surfaces, where the standard and very elaborate and efficient methods for silicon processing can be applied directly, the integrated circuits being well suited for electrical signals having high frequencies since the semi-insulating layer will isolate the circuits from the bulk of the substrate and thus reduce the parasitic capacitances and dielectric losses in the substrate.
The substrate material is thus generally based on silicon and has at least one semiinsulating layer which is based on silicon and which often is an interior layer and it comprises particles having depletion regions around them. To form the semi-insulating layer the particles are distributed in such a way that the depletion regions of neighbouring particles overlap each other. In particular the particles can be made or selected so that the depletion regions are generated by hetero-junctions between the silicon and the particles. Alternatively the particles can be made so that the depletion regions are generated by Schottky barriers between the silicon and the particles.
The particles can for example comprise metal atoms, in particular atoms of molybdenum and/or of tungsten, and/or silicide molecules, such as molecules of a silicide of one or more met

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Substrate for high frequency integrated circuits does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Substrate for high frequency integrated circuits, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Substrate for high frequency integrated circuits will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2590927

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.