Coupling and stabilization system for proximal end of catheter

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128SDIG006, C128SDIG008

Reexamination Certificate

active

06332874

ABSTRACT:

BACKGROUND
1. The Field of the Invention
This invention pertains to implantable catheters, and, more particularly, to systems for effecting the stabilization on the skin of a patient of the extracorporeal portion of an implanted vascular access catheter.
2. Background Art
It is now common to use an implanted catheter to repeatedly access the vascular system of a patient and with the catheter perform repeated therapeutic medical activity. Such therapeutic activity could include the intermittent or continuous infusion of medication and fluids, the periodic sampling of blood, or the continuous withdrawal and return of blood for processing outside of the body of the patient. The catheters used in these activities are referred to as vascular access catheters.
Before any therapeutic activity can actually commence, however, the vascular access catheter must be implanted in the body of the patient with the distal tip of the catheter residing at the location in the vascular system at which an intended therapeutic activity is appropriate. Typically, most of the length of an implanted vascular access catheter resides within blood vessels of the vascular system, extending from the distal tip of the catheter to a location in the vascular system at which the catheter, by traversing a puncture or incision formed through a wall of the blood vessel in which the catheter is disposed, enters into the surrounding subcutaneous tissue of the patient. The location at which this occurs is referred to as a venipuncture site. Venipuncture sites are classified on the basis of the position of a venipuncture site in relation to the center of the body of the patient. Central venipuncture sites are those at the superior or inferior vena cava. Midlavicular venipuncture sites are located medial of the shoulder of the patient, but lateral of the subclavian vein. Midline venipuncture sites enter the upper basilic or cephalic veins. The freedom to select among venipuncture sites is most curtailed relative to patients of slight stature, particularly small children and infants.
Proximal of the venipuncture site, the implanted catheter extends through the subcutaneous tissue of the patient to emerge through the skin at a location that is referred to as the skin exit site. Most skin exit sites are chosen as being locations at which the proximal end of the implanted catheter can be easily manipulated by medical personnel. Favored among such locations are the neck, the region about the collar bone, the upper leg, the upper arm, and the forearm.
Occasionally, the skin exit site is somewhat removed from the venipuncture site. Then a significant portion of the length of the implanted catheter must be embedded in the subcutaneous tissue of the patient in a surgically created tunnel that extends from the venipuncture site to the skin exit site. The disposition of a significant portion of the length of an implanted catheter in such a subcutaneous tunnel assists in stabilizing the implanted catheter by resisting sliding movement of the catheter back and forth, internally at the venipuncture site or externally at the skin exit site.
On the other hand, with patients of slight stature and particularly with small children and infants, the skin exit site is frequently located immediately adjacent to the venipuncture site. Under such conditions, the portion of the implanted catheter disposed in subcutaneous tissue is so short as to permit the body of the catheter to slide back and forth across the venipuncture site, as well as in and out of the skin exit site.
The portion of an implanted catheter that resides in a blood vessel of the vascular access system or within subcutaneous tissue is referred to as the implanted portion of that catheter. In all instances, a portion of the proximal end of an implanted catheter must remain outside of the body of the patient. It is this portion of an implanted catheter, from the proximal end thereof to the skin access site, that is referred to as the extracorporeal portion of the implanted catheter.
The extracorporeal portion of an implanted catheter must be capable of being selectively coupled to and uncoupled from the tubing and medical equipment outside the body of the patient that are required for therapeutic activity. Accordingly, the proximal end of virtually all vascular access catheters terminates in a catheter coupling hub that can be secured in fluid communication with such tubing and medical equipment, or can be capped, valved, or clamped closed between periods of actual use.
The repeated manipulation of the extracorporeal portion of an implanted catheter causes wear in the material of the catheter and reduces the reliability of the attachment between the proximal end of the catheter and the catheter coupling hub. In the absence of countermeasures, forces imposed on the extracorporeal portion of an implanted catheter result in motions of the extracorporeal portion of the catheter that cause damage to the catheter. Motion of the extracorporeal portion of an implanted catheter is also communicated to the skin access site, causing various complications depending upon the length of any subcutaneous tunnel in which a portion of the catheter is imbedded. Where such a subcutaneous tunnel is lengthy, motions of the extracorporeal portion of a catheter are relayed directly to the tissue along the subcutaneous tunnel, causing pain and irritation, precluding healing, and leading to infection. These results in turn can necessitate the explanation of the catheter. Where the portion of an implanted catheter extending subcutaneously between the venipuncture site and the skin exit site is short, motions of the extracorporeal portion of the catheter tend to slide the catheter in and out of the vascular system, causing bleeding and likewise leading to infection.
To counteract these undesirable consequences, a variety of measures are undertaken to stabilize the extracorporeal portion of an implanted catheter on the skin of the patient. Tie-down materials, such as bandaging, patches with upstanding anchoring posts, medical adhesive tape, belts, elastic bands, and sutures, are used for this purpose.
To enhance the effectiveness of such tie-down materials, otherwise unnecessary structures are formed on or attached to the catheter coupling hub or the portion of the proximal end of the catheter attached thereto. For example, it is common in the art of catheter implantation to provide one or more flap-like structures that extend laterally from the catheter coupling hub, from the portion of the proximal end of the catheter attached thereto, or from a tubular sleeve that is disposed about either or both of the catheter and the catheter coupling hub. These structures are referred to as stabilization wings.
Even without the assistance of any tie-down materials, a stabilization wing prevents a catheter coupling hub from rolling along the skin of the patient, pivoting about the skin exit site, and twisting the extracorporeal portion of the catheter between the skin exit site and the coupling hub. Sliding motions of a coupling hub on the skin of the patient in directions normal to the length of the catheter are curtailed by the use of tie-down materials applied over or about the coupling hub and against the skin. Tie-down materials also prevent movement of the coupling hub and associated catheter in directions aligned with the length of the catheter, motions that could dislodge the catheter from the skin exit site entirely. Stabilization wings enhance the purchase afforded on the catheter coupling hub by tie-down materials.
A system for coupling an implanted catheter to extracorporeal medical equipment and simultaneously stabilizing the extracorporeal portion of that catheter is complex to design. It is a process that must accommodate a variety of functional needs in an environment involving materials as different as human tissue, bodily fluids, flexible fluid conduits, rigid coupling structures, and various tie-down materials. The extracorporeal portion of an implanted catheter functions as an interface between th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Coupling and stabilization system for proximal end of catheter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Coupling and stabilization system for proximal end of catheter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Coupling and stabilization system for proximal end of catheter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2589944

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.