Vehicle hydraulic component support and cooling system

Internal-combustion engines – Cooling – Automatic coolant flow control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C123S041490

Reexamination Certificate

active

06308665

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention pertains to a cooling system for internal combustion engines cooled by a radiator, and more particularly, to a system and method for providing a conduit which not only couples a hydraulic pump to a hydraulic component, but also provides a support structure for supporting the hydraulic component at a predetermined position with respect to the radiator, minimizing or eliminating the need for additional support brackets.
2. Brief Description of the Related Art
For years, fans have been used to draw air through a radiator of an internal combustion engine for the purpose of lowering the temperature of the engine coolant. Initially, such fans were directly powered by the engines and, often, belt systems were employed. With the advent of front wheel drive, vehicles used crossmounted engines and radiator coolant fans have often been powered by electric motors. Even in some engines having crank shafts which extend parallel to the length of the vehicle, electric motors have been used to drive the radiator cooling fan in view of the versatility of installation and ease of location with such system components to accommodate themselves to the aerodynamic configuration and other space limitations of the vehicle.
While internal engine cooling fans driven by electric motors are suitable in many light duty installations, electric motors are not suitable for powering fans under heavy duty requirements as the size of the electric motor must be significantly increased as compared to lighter duty installations and the electric drain on the vehicle electric system is enormous. Further, larger electric motors are very expensive and their size defeats the advantages obtained with smaller electric motors. Typical electric drive systems for permitting the engine to transfer a required amount of power to a fan are shown in U.S. Pat. Nos. 2,777,287; 3,220,640; 3,659,567; 3,934,644; 4,062,329; 4,066,047; 4,223,646; 4,461,246; 4,489,680; and 5,216,983.
Another advantage of using a hydraulically powered fan is that they typically are very quiet which can be aesthetically pleasing to the vehicle's operator.
One of the problems with using hydraulic and electronic fan motors is that the shrouds had to be provided with brackets which were affixed or integrally molded to the shroud assembly such that when the motor was mounted directly to the brackets, it would cause the fan blade to be properly positioned and centered in the shroud. U.S. Pat. No. 5,216,983 issued to Nilson illustrates this approach. A number of problems arise with the approach of Nilson. First, the fan shroud must have the brackets molded or mounted thereto. Also, the hydraulic conduit is not integrally coupled to or molded into the fan shroud, which can make accurately mounting the motor somewhat tedious.
Another problem with the cooling system designs of the past is illustrated in
FIG. 6
wherein a radiator A had a structural support B secured or welded thereto for holding the fan motor C such that the fan blade D was held in operative relationship with the radiator A. As illustrated in
FIG. 1
of the Nilson reference, this bracket may be affixed at an outer end to an end of a shroud. As illustrated in
FIG. 6
, one problem with such a design is the working depth (indicated by double arrow E in
FIG. 6
) required. Because of the reduction of engine compartment space, there is a need to reduce the space consumed by the motor and radiator arrangement.
Notice also that as the motor in
FIG. 6
is energized to pull air through the radiator and toward the engine, the motor is forced in an axial direction towards the radiator. Because the hydraulic conduits to and from the Nilson motor are situated substantially parallel to a plane in which the radiator lies, it is believed that an undesirable loading, such as a shear or bending force, may cause the conduits to bend, leak or break at various points, such as where the conduits are coupled to the motor or require the addition of substantial structural elements capable of transmitting the motor load forces.
What is needed, therefore, is a system and method for providing a hydraulic coupling between the hydraulic components in a vehicle which will not only couple the hydraulic components, but which will provide the sole means for supporting the hydraulic component in a predetermined position, without the need for excessive space or support brackets or engine couplings and which is designed and positioned to facilitate providing an effective cooling system and method for cooling the hydraulic fluid.
SUMMARY OF THE INVENTION
It is, therefore, a primary object of the invention to provide a system and method for hydraulically coupling a plurality of hydraulic components using a hydraulic conduit which also serves to support at least one of the plurality of components in a predetermined position on the vehicle.
Another object of the invention is to provide a system and method for providing a hydraulic conduit system which will not only support a hydraulic component in a predetermined position, but which will facilitate cooling the hydraulic fluid traveling through the hydraulic conduit.
Still another object of the invention is to provide a hydraulic conduit which can be preformed and coupled to a hydraulic motor such that it can quickly be mounted on, for example, a fan shroud, thereby reducing the amount of time required to assemble the hydraulic cooling system.
Still another object of the invention is to provide a system and method for hydraulically coupling a plurality of hydraulic components together using a hydraulic conduit which is formed with a plurality of channels and a valve for facilitating controlling the speed of the motor.
A further object of the invention is to provide a cooling system design which distributes forces generated by the motor and which can be utilized in limited-space environments.
In one aspect, this invention comprises a hydraulic component support for supporting a hydraulic component at a predetermined position on a vehicle comprising at least one hydraulic conduit for providing a passageway for transferring hydraulic fluid to and from the hydraulic component, at least one hydraulic conduit being formed to also provide the sole support for supporting the hydraulic component at the predetermined position.
In another aspect, this invention comprises a hydraulic cooling system for use in a vehicle comprising a hydraulic pump, a radiator, a hydraulic motor for driving a fan blade and a hydraulic conduit for hydraulically coupling the hydraulic pump and the hydraulic motor together, the hydraulic conduit also defining a support structure for supporting the hydraulic motor in operative relationship with the radiator, without the need for additional support brackets.
In another aspect, this invention comprises a method for supporting a component on a motor vehicle, the method comprising the steps of forming a hydraulic conduit to define a support for supporting the component at a predetermined position on the motor vehicle, thereby eliminating the need for additional support brackets.
In still another aspect, this invention comprises a method for delivering hydraulic fluid between a hydraulic pump and a hydraulic component in a vehicle comprising the steps of hydraulically coupling the hydraulic pump to the hydraulic component using a hydraulic conduit and forming the hydraulic conduit to define a self-contained support structure capable of supporting either the hydraulic pump or the hydraulic component in a first predetermined position or a second predetermined position, respectively.
In still another aspect, this invention comprises a hydraulic conduit for supporting a hydraulic component at a predetermined position on a vehicle comprising at least one conduit member for transporting hydraulic fluid to and from the hydraulic component, at least one conduit member also defining a support structure for supporting the hydraulic component at the predetermined position, without using additional support bracke

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Vehicle hydraulic component support and cooling system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Vehicle hydraulic component support and cooling system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vehicle hydraulic component support and cooling system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2585600

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.