System and methods for measuring forces

Measuring and testing – Dynamometers – Responsive to multiple loads or load components

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06324920

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to sensors and actuators, needed for measuring or causing forces, accelerations and angles or changes thereof, to hardware and software needed to drive such sensors and actuators, and to processes for manufacturing the same.
BACKGROUND OF THE INVENTION
Devices that monitor and visualize information relating to the dynamics of a system detect forces that cause the motion of the system relative to three axes of a reference frame. These forces can be used to recreate the motion of the system, and consequently to render an image of that motion, as a projection in a virtual three-dimensional display space, as a projection or intersection with a two-dimensional plane, or as an oscillation along a single axis. The reconstruction is possible in any environment, whether the system moves in three-dimensional space, on a surface, or along a single line.
How accurately images can be visualized or reconstructed depends on how completely the detected forces describe the motion of the system in its environment. For example, forces applied along more than one axis to a pen point may represent that the pen point moved along a writing surface, or may represent that the pen is being pressed at an angle on a stationary point. Additional information is necessary to distinguish between these situations so that an accurate image can be obtained. Similarly, the motion of the head of a golf club can only be accurately visualized if all forces executed upon it are known, including the torsion and the strain on the shaft of the club caused by inertia of the club head and air resistance. The ability to image dynamic information regarding a system, therefore, is limited by the available information regarding variation of motion and orientation of the components of the system.
In general, devices for imaging information of systems in motion use external reference points to measure position and orientation, at various moments in time. For instance, instruments that measure the position of a satellite measure orientation with respect to the earth's horizon and with respect to a distant star. As another example, pen computers use a tablet to measure the change of position and orientation of a pen point on a writing surface. However, a suitable sensor system can be incorporated into a device in order to measure the forces acting on an object that alter its position or orientation.
Force, like many physical phenomena, cannot be measured without disturbing the phenomenon being measured. Most force transducers have an elastic sensing element, whose deformation is a measure of the acting force. In many force measurement systems, such as strain gauges, inductive, and capacitive systems, this deformation itself must be measured. The sensing element must be compliant enough to provide sufficiently large deformation and hence useful sensitivity. However, large deformations are undesirable because they limit the frequency response of the measuring system and also introduce geometric changes into the force measuring path which inevitably leads to measurement errors.
Piezoelectric materials, which can convert forces into electricity, are useful for detecting forces. In piezoelectric force transducers, the sensing element is the same as the transduction element which produces the electrical output signal from an acting force. Therefore, it is not necessary to measure the deformation, which is typically much smaller than with other measuring systems. The resultant rigidity of piezoelectric force transducers greatly reduces the distortion caused by the measurement and provides an inherently high natural frequency and associated rise time. This permits the measurement of extremely fast events that otherwise might be difficult to discern accurately.
Piezoelectric accelerometers require the addition of an inertial mass to a piezoelectric force transducer. As the mass is accelerated, it exerts a force on the piezoelectric material. Because of the constant inertial mass, the force acting on the measuring element is proportional to the acceleration in accordance with Newton's first law. Thus, the electrical charge generated by the piezoelectric material is proportional to the acceleration.
Piezoelectric components are also capable of converting electricity into force, and thus can be used as actuators. In its simplest form, a piezoelectric actuator abuts against a non-displaceable support and pushes against a displaceable element. When an electric voltage is applied across the piezoelectric element, it expands, displacing the displaceable element. The variations in length tend to be rather small, even when individual piezoelectric elements are arranged in stacks with an overall height of approximately 20 mm. Such arrangements are used as precision drives, for example, in adjustment operations.
However, existing piezoelectric devices are unable to measure forces or accelerations in three axes. What is needed is a device capable of measuring and/or transmitting forces along multiple axes in a sensitive, controlled manner. What is also needed is a device capable of sensitive acceleration measurements in multiple axes. A device that combines sensor and actuator capabilities for sensitive, controlled feedback mechanisms is also needed.
SUMMARY OF THE INVENTION
The systems and methods described herein relate to a sensor/actuator device. In one embodiment, a sensor for detecting forces comprises at least two piezoelectric stacks electrically coupled to a corresponding stack electrode, such that a force applied to the sensor generates a change in electrical potential between each of the stack electrodes and a common ground, which change is representative of a component of the force acting on the corresponding stack. Each stack may include a plurality of piezoelectric layers electrically coupled to the corresponding stack electrode. A sensor with three stacks may be capable of resolving forces in three dimensions. Each stack may further include a plurality of piezoelectric layers electrically coupled to the common ground. In one embodiment, the stacks are encircled by an electrically conductive wire. In another embodiment, the stacks are coupled to at least one inertial mass.
In another embodiment, a sensor for detecting forces has a first plurality of stacked piezoelectric layers, each layer divided into a number of regions, each region electrically insulated from other regions of the same layer and electrically coupled to like regions of other layers by a stack electrode, such that a force applied to the sensor generates a change in electrical potential between each of the stack electrodes and a common ground, which change is representative of a component of the force acting on the corresponding region. Such a sensor may also include a second plurality of stacked piezoelectric layers electrically coupled to the common ground and intermixed with the first plurality of stacked piezoelectric layers. The layers of the second plurality of stacked piezoelectric layers may similarly be divided into a number of regions. Layers of the first plurality and of the second plurality may alternate in series. When the number of regions in the first plurality of stacked piezoelectric layers is three, the sensor may be capable of resolving forces in three dimensions. As described above, the layers may be encircled by an electrically conductive wire. In one embodiment, the layers are coupled to at least one inertial mass. In one embodiment, application of an electrical potential between the common ground and a stack electrode causes deformation of the region electrically coupled thereto.
The systems and methods disclosed herein also provide a system for detecting forces, comprising a housing, two sensors disposed in the housing, each sensor comprising a plurality of stacked piezoelectric layers, each layer divided into a number of regions, each region electrically insulated from other regions of the same layer and electrically coupled to like regions of other layers by a stack electrode, and a divide

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and methods for measuring forces does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and methods for measuring forces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and methods for measuring forces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2582533

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.