Methods for treating pain with a modified neurotoxin

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Bacterium or component thereof or substance produced by said...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06333037

ABSTRACT:

BACKGROUND
The present invention relates to methods for treating pain. In particular, the present invention relates to methods for treating pain by intraspinal administration of a neurotoxin.
Many, if not most ailments of the body cause pain. Generally pain is experienced when the free nerve endings which constitute the pain receptors in the skin as well as in certain internal tissues are subjected to mechanical, thermal or chemical stimuli. The pain receptors transmit signals along afferent neurons into the central nervous system and thence to the brain.
The causes of pain can include inflammation, injury, disease, muscle spasm and the onset of a neuropathic event or syndrome. Ineffectively treated pain can be devastating to the person experiencing it by limiting function, reducing mobility, complicating sleep, and dramatically interfering with the quality of life.
Inflammatory pain can occur when tissue is damaged, as can result from surgery or due to an adverse physical, chemical or thermal event or to infection by a biologic agent. Although inflammatory pain is generally reversible and subsides when the injured tissue has been repaired or the pain inducing stimulus removed, present methods for treating inflammatory pain have many drawbacks and deficiencies. Thus, the typical oral, parenteral or topical administration of an analgesic drug to treat the symptoms of pain or of, for example, an antibiotic to treat inflammatory pain causation factors can result in widespread systemic distribution of the drug and undesirable side effects. Additionally, current therapy for inflammatory pain suffers from short drug efficacy durations which necessitate frequent drug readministration with possible resulting drug resistance, antibody development and/or drug dependence and addiction, all of which are unsatisfactory. Furthermore, frequent drug administration increases the expense of the regimen to the patient and can require the patient to remember to adhere to a dosing schedule.
Neuropathic pain is a persistent or chronic pain syndrome that can result from damage to the nervous system, the peripheral nerves, the dorsal root ganglion or dorsal root, or to the central nervous system. Neuropathic pain syndromes include allodynia, various neuralgias such as post herpetic neuralgia and trigeminal neuralgia, phantom pain, and complex regional pain syndromes, such as reflex sympathetic dystrophy and causalgia. Causalgia is characterized by spontaneous burning pain combined with hyperalgesia and allodynia.
Unfortunately, current methods to treat neuropathic pain, such as by local anesthetic blocks targeted to trigger points, peripheral nerves, plexi, dorsal roots, and to the sympathetic nervous system have only short-lived antinociceptive effects. Additionally, longer lasting analgesic treatment methods, such as blocks by phenol injection or cryotherapy raise a considerable risk of irreversible functional impairment. Furthermore, chronic epidural or intrathecal (collectively “intraspinal”) administration of drugs such as clonidine, steroids, opioids or midazolam have significant side effects and questionable efficacy.
Tragically there is no existing method for adequately, predictably and specifically treating established neuropathic pain (Woolf C. et al.,
Neuropathic Pain: Aetiology, Symptoms, Mechanisms, and Management
, Lancet 1999; 353: 1959-64) as present treatment methods for neuropathic pain consists of merely trying to help the patient cope through psychological or occupational therapy, rather than by reducing or eliminating the pain experienced.
Spasticity or muscle spasm can be a serious complication of trauma to the spinal cord or other disorders that create damage within the spinal cord and the muscle spasm is often accompanied by pain. The pain experienced during a muscle spasm can result from the direct effect of the muscle spasm stimulating mechanosensitive pain receptors or from the indirect effect of the spasm compressing blood vessels and causing ischemia. Since the spasm increases the rate of metabolism in the affected muscle tissue, the relative ischemia becomes greater creating thereby conditions for the release of pain inducing substances.
Within the enclosure by the vertebral canal for the spinal cord by the bones of the vertebrae, the spinal cord is surrounded by three meningeal sheaths which are continuous with those which encapsulate the brain. The outermost of these three meningeal sheaths is the dura matter, a dense, fibrous membrane which anteriorally is separated from the periosteum of the vertebral by the epidural space. Posterior to the dura matter is the subdural space. The subdural space surrounds the second of the three meningeal sheaths which surround the spinal cord, the arachnoid membrane. The arachnoid membrane is separated from the third menirigeal sheath, the pia mater, by the subarachnoid or intrathecal space. The subarachnoid space is filled with cerebrospinal fluid (CSF). Underlying the pia mater is the spinal cord. Thus the progression proceeding inwards or in posterior manner from the vertebra is the epidural space, dura mater, subdural space, arachnoid membrane, intrathecal space, pia matter and spinal cord.
Therapeutic administration of certain drugs intraspinally, that is to either the epidural space or to the intrathecal space, is known. Administration of a drug directly to the intrathecal space can be by either spinal tap injection or by catheterization. Intrathecal drug administration can avoid the inactivation of some drugs when taken orally as well and the systemic effects of oral or intravenous administration. Additionally, intrathecal administration permits use of an effective dose which is only a fraction of the effective dose required by oral or parenteral administration. Furthermore, the intrathecal space is generally wide enough to accommodate a small catheter, thereby enabling chronic drug delivery systems. Thus, it is known to treat spasticity by intrathecal administration of baclofen. Additionally, it is known to combine intrathecal administration of baclofen with intramuscular injections of botulinum toxin for the adjunct effect of intramuscular botulinum for reduced muscle spasticity. Furthermore, it is known to treat pain by intraspinal administration of the opioids morphine and fentanyl, as set forth in Gianno, J., et al.,
Intrathecal Drug Therapy for Spasticity and Pain
, Springer-Verlag (1996), the contents of which publication are incorporated herein by reference in its entirety.
The current method for intrathecal treatment of chronic pain is by use of an intrathecal pump, such as the SynchroMed® Infusion System, a programmable, implanted pump available from Medtronic, Inc., of Minneapolis, Minnesota. A pump is required because the antinociceptive or antispasmodic drugs in current use have a short duration of activity and must therefore be frequently readministered, which readministration is not practically carried out by daily spinal tap injections. The pump is surgically placed under the skin of the patient's abdomen. One end of a catheter is connected to the pump, and the other end of the catheter is threaded into a CSF filled subarachnoid or intrathecal space in the patient's spinal cord. The implanted pump can be programmed for continuous or intermittent infusion of the drug through the intrathecally located catheter. Complications can arise due the required surgical implantation procedure and the known intrathecally administered drugs for pain have the disadvantages of short duration of activity, lipid solubility which permits passage out of the intrathecal space and systemic transport and/or diffusion to higher CNS areas with potential respiratory depression resulting.
Thus, a significant problem with many if not all of the known intrathecally administered drugs used to treat pain, whether administered by spinal tap or by catheterization, is that due to the drug's solubility characteristics, the drug can leave the intrathecal space and additionally due to poor neuronal binding characteristics, the dru

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for treating pain with a modified neurotoxin does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for treating pain with a modified neurotoxin, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for treating pain with a modified neurotoxin will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2582525

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.