Molding device for making a connector

Plastic article or earthenware shaping or treating: apparatus – Female mold and charger to supply fluent stock under... – With product ejector

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C425S572000, C425S588000, C425S444000

Reexamination Certificate

active

06318991

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a connector that can doubly secure terminal members in a connector housing. The connector comprises a retainer mounted in the connector housing, where the retainer can be moved in a reciprocating manner with respect to connector housing to secure the terminal member. The invention also provides for a method for manufacturing the connector, a molding device for manufacturing the connector, and a method for mounting the retainer in the connector housing.
2. Description of Related Art
A conventional connector or front retainer-type connector secures a terminal member in a double manner by pushing a retainer into a connector housing from the front surface. This conventional front retainer-type connector will now be described below with reference to
FIGS. 26 and 27
.
A connector housing a has an interior with a plurality of cavities c, which receives a metal terminal member b. The terminal member b is inserted into the connector housing from a backside. In the bottom surface of the connector housing a, a plurality of flexible lances d are provided. The lances d are each engageable with a corresponding terminal member b. In the front surface of the connector housing a, a retainer insertion hole e is formed. A retainer g can be mounted into the insertion hole e. The retainer g includes an insertion portion h that is insertable into flexibly deformable spaces f formed in each lance d.
As the retainer g is inserted into the retainer insertion hole
3
in the connector housing a, the retainer g is initially held at a shallow insertion depth in a temporarily secured position, shown by a solid line in FIG.
26
. In the temporarily secured position, the insertion portion h of the retainer g is in front of the flexibly deformable spaces f for each lance d. Therefore, if the terminal member b is inserted into the cavities c, it will deform the lance d. When the terminal member b is inserted to its normal or fully inserted position, each lance d is elastically deformed and returns to the original condition, thereby engaging the terminal member b so that the terminal member b is secured. If the retainer g is further pushed into a fully secured position, as shown in
FIG. 27
, the insertion portion h of the retainer g is inserted into the flexibly deformable space f of the lance d. This assures that the terminal member b cannot be removed and the terminal member b is doubly secured.
In the conventional connector, the direction the retainer g is pushed toward the temporarily secured position is the same as the direction the retainer g is pushed from the temporarily secured position toward the fully secured position. In the temporarily secured position, although the retainer g is tentatively held, there is a possibility that the retainer g can be erroneously pushed into the fully secured position. If the retainer g is pushed into the fully secured position before the terminal member b is inserted, each lance d cannot be flexibly deformed. Thus, it is impossible to insert the terminal member b. This inevitably requires a complicated extra operation, where the retainer g must be returned back to the temporarily secured position, and the terminal member b must be reinserted, before the retainer g can be again pushed into its fully secured position.
In a conventional connector, when a male side front retainer-type connector is mounted into the male side of a connector housing, a hood can be provided. Since a tab of a male-type terminal member projects into the hood, it is impossible for a user to insert his or her hand into the housing. Therefore, a specially made tool or jig must be used to mount the retainer. This results in a poor and inexact operability. Also, the tab of the terminal member can be deformed as the retainer is mounted.
Further, the costs of conventional connectors can be high. In the above-mentioned conventional connectors, the connector is provisionally assembled so the retainer g is held in the temporarily secured position, and the connector is then transported to a terminal insertion location. Prior to the temporary assembling of the connector housing a and retainer g, the connector housing a and retainer g are separately molded by separate molding devices. After molding, the connector housing a and retainer g are carried to a assembly site, where they can be assembled by an automatic assembly machine, for example a parts feeder. Alternatively, they can be assembled manually by an operator.
The molding of the connector housing a and retainer g is separate from their assembly, and a temporarily assembled connector can be completed through the steps of molding, carrying and assembling the connector housing a and retainer g. Also, when the housing a and retainer g are manually connected together, an inspection step is required. Therefore, since a large number of steps are necessary for completion of the connector, the manufacturing costs increase. It is also necessary to separately manage and maintain the separate molds for the connector housing a and retainer g. This further adds to the cost of manufacturing of the connector.
SUMMARY OF THE INVENTION
The invention is directed to solving the problems found in conventional connectors. Accordingly, an object of the invention is to provide a connector, which can prevent a retainer from being erroneously inserted from a temporarily secured position to a fully secured position. Another object of the invention is to provide a method and molding device for manufacturing the connector. Further, it is another object of the invention to provide a method for mounting a retainer into a connector housing, where the retainer can be simply mounted into the connector housing without causing a terminal member to become deformed.
In accordance with one object of the invention, a connector comprises a connector housing, which includes cavities that are formed in an interior of the connector housing and into which a terminal member can be inserted, and a retainer that can be mounted into the connector housing so it can be moved between a temporarily secured position and a fully secured position. The movement is in a back-and-forth direction along the connector housing. The retainer is able to secure the terminal member to prevents its removal when the retainer is in the fully secured position. The connector housing includes a retainer insertion hole with an opening in the side surface, so the retainer can be inserted. When inserted into the retainer insertion hole, the retainer can be moved between the temporarily secured position and the fully secured position. The retainer is configured such that, after it is inserted into the retainer insertion hole and is held in the temporarily secured position, it can be further moved into the fully secured position.
A further object of the invention is achieved by providing a mounting method where the retainer is first inserted from the opening in the side surface of the connector housing into the retainer insertion hole. The retainer is held in the temporarily secured position and then, is further pushed into the retainer insertion hole in a back-and-forth direction of the connector housing to be moved into the fully secured position. The direction in which the retainer is pushed into the retainer insertion hole toward the temporarily secured position is different from the direction in which the retainer is further pushed into the retainer insertion hole from the temporarily secured position toward the fully secured position and is preferably orthagonal. Thus, it is possible to prevent the retainer, which must be held in the temporarily secured position, from being erroneously pushed into the fully secured positions. Therefore, the need for a retainer return operation, as discussed above, is eliminated. The retainer assembling operation can then be efficiently conducted.
According to another object of the invention, a method for manufacturing a connector is provided. The connector comprises a connector housing including cavities,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Molding device for making a connector does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Molding device for making a connector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Molding device for making a connector will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2579208

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.