Photographic material having enhanced light absorption and...

Radiation imagery chemistry: process – composition – or product th – Radiation sensitive product – Silver compound sensitizer containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S572000, C430S577000, C430S583000, C430S584000

Reexamination Certificate

active

06312883

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a silver halide photographic material containing at least one silver halide emulsion that has enhanced light absorption and low dye stain.
BACKGROUND OF THE INVENTION
J-aggregating cyanine dyes are used in many photographic systems. It is believed that these dyes adsorb to a silver halide emulsion and pack together on their “edge” which allows the maximum number of dye molecules to be placed on the surface. However, a monolayer of dye, even one with as high an extinction coefficient as a J-aggregated cyanine dye, absorbs only a small fraction of the light impinging on it per unit area. The advent of tabular emulsions allowed more dye to be put on the grains due to increased surface area. However, in most photographic systems, it is still the case that not all the available light is being collected.
The need is especially great in the blue spectral region where a combination of low source intensity and relatively low dye extinction result in deficient photoresponse. The need for increased light absorption is also great in the green sensitization of the magenta layer of color negative photographic elements. The eye is most sensitive to the magenta image dye and this layer has the largest impact on color reproduction. Higher speed in this layer can be used to obtain improved color and image quality characteristics. The cyan layer could also benefit from increased red-light absorption which could allow the use of smaller emulsions with less radiation sensitivity and improved color and image quality characteristics. For certain applications, it may be useful to enhance infrared light absorption in infrared sensitized photographic elements to achieve greater sensitivity and image quality characteristics.
One way to achieve greater light absorption is to increase the amount of spectral sensitizing dye associated with the individual grains beyond monolayer coverage of dye (some proposed approaches are described in the literature, G. R. Bird,
Photogr. Sci. Eng.,
18, 562 (1974)). One method is to synthesize molecules in which two dye chromophores are covalently connected by a linking group (see U.S. Pat. Nos. 2,518,731, 3,976,493, 3,976,640, 3,622,316, Kokai Sho 64(1989)91134, and EP 565,074). This approach suffers from the fact that when the two dyes are connected they can interfere with each other's performance, e.g., not aggregating on or adsorbing to the silver halide grain properly.
In a similar approach, several dye polymers were synthesized in which cyanine dyes were tethered to poly-L-lysine (U.S. Pat. No. 4,950,587). These polymers could be combined with a silver halide emulsion, however, they tended to sensitize poorly and dye stain (an unwanted increase in D-min due to retained sensitizing dye after processing) was severe in this system and unacceptable.
A different strategy involves the use of two dyes that are not connected to one another. In this approach the dyes can be added sequentially and are less likely to interfere with one another. Miyasaka et al. in EP 270 079 and EP 270 082 describe silver halide photographic material having an emulsion spectrally sensitized with an adsorbable sensitizing dye used in combination with a non-adsorbable luminescent dye which is located in the gelatin phase of the element. Steiger et al. in U.S. Pat. Nos. 4,040,825 and 4,138,551 describe silver halide photographic material having an emulsion spectrally sensitized with an adsorbable sensitizing dye used in combination with second dye which is bonded to gelatin. The problem with these approaches is that unless the dye not adsorbed to the grain is in close proximity to the dye adsorbed on the grain (less than 50 angstroms separation) efficient energy transfer will not occur (see T. Förster,
Disc. Faraday Soc.,
27 (1959)). Most dye off-the-grain in these systems will not be close enough to the silver halide grain for energy transfer, but will instead absorb light and act as a filter dye leading to a speed loss. A good analysis of the problem with this approach is given by Steiger et al. (
Photogr. Sci. Eng.,
27, 59 (1983)).
A more useful method is to have two or more dyes form layers on he silver halide grain. Penner and Gilman described the occurrence of greater than monolayer levels of cyanine dye on emulsion grains,
Photogr. Sci. Eng.,
20, 97 (1976); see also Penner,
Photogr. Sci. Eng.,
21, 32 (1977). In these cases, the outer dye layer absorbed light at a longer wavelength than the inner dye layer (the layer adsorbed to the silver halide grain). Bird et al. in U.S. Pat. No. 3,622,316 describe a similar system. A requirement was that the outer dye layer absorb light at a shorter wavelength than the inner layer. This appears to be the closest prior art to our invention. The problem with previous dye layering approaches was that the dye layers described produced a very broad sensitization envelope. This would lead to poor color reproduction since, for example, the silver halide grains in the same color record would be sensitive to both green and red light.
Yamashita et. al. (EP 838 719 A2) describes the use of two or more cyanine dyes to form more than one dye layer on silver halide emulsions. The dyes are required to have at least one aromatic or heteroaromatic substituent attached to the chromophore via the nitrogen atoms of the dye. Yamashita et. al. teaches that dye layering will not occur if this requirement is not met. This is undesirable because such substitutents can lead to large amounts of retained dye after processing (dye stain) which affords increased D-min. We have found that this is not necessary and that neither dye is required to have a at least one aromatic or heteroaromatic substitute attached to the chromophore via the nitrogen atoms of the dye.
Further improvements in dye layering have been described in U.S. application Ser. No. 09/151,974 filed Sep. 11, 1998, U.S. application Ser. No. 09/151,915 filed Sep. 11, 1998, U.S. application Ser. No. 09/151,916 filed Sep. 11, 1998, and U.S. application Ser. No. 09/151,977 filed Sep. 11, 1998. For certain photographic applications it is highly desirable that the dyes used for dye layering at least partially bleach, that is decolorize, during the processing of the photographic element. Retained dye can contribute to Dmin and is often very undesirable. However, even though some of the dyes described in the applications cited above afford reduced dye stain further improvements are needed.
PROBLEM TO BE SOLVED BY THE INVENTION
Not all the available light is being collected in many photographic systems. The need is especially great in the blue spectral region where a combination of low source intensity and relatively low dye extinction result in deficient photoresponse. The need for increased light absorption is also great in the green sensitization of the magenta layer of color negative photographic elements. The eye is most sensitive to the magenta image dye and this layer has the largest impact on color reproduction. Higher speed in this layer can be used to obtain improved color and image quality characteristics. The cyan layer could also benefit from increased red-light absorption which could allow the use of smaller emulsions with less radiation sensitivity and improved color and image quality characteristics. For certain applications, it may be useful to enhance infrared light absorption in infrared sensitized photographic elements to achieve greater sensitivity and image quality characteristics.
The use of more than one dye layer to enhance light absorption is often accompanied by much higher levels of post-process retained dye (dye stain). It would be highly desirable if dyes could be found that bleach (decolorize) during processing providing lower dye stain. The dyes of this invention have enhanced bleaching rates affording less post-process dye stain.
SUMMARY OF THE INVENTION
We have found that it is possible to form more than one dye layer on silver halide emulsion grains and that this can afford increased light absorption and that the invention dyes give

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Photographic material having enhanced light absorption and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Photographic material having enhanced light absorption and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photographic material having enhanced light absorption and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2575644

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.