Method for hybrid inorganic/organic composite materials

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C523S202000, C523S203000, C523S216000, C525S474000, C525S479000

Reexamination Certificate

active

06313219

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to hybrid materials systems. More particularly, the present invention relates to a process for engineering hybrid inorganic/organic composite materials utilizing a modular approach.
BACKGROUND OF THE INVENTION
A demand exists for materials having unique physico-chemical properties. Such a demand stems, in part, from a desire to find replacements for mainstay materials such as conventional glass, etc. While possessing the desired properties of the mainstay material, such replacements would ideally be cheaper and simpler to produce (e.g., milder processing conditions, etc.), and lighter yet more mechanically robust than the materials they replace.
One class of materials having such unique physico-chemical properties are hybrid inorganic/organic composites (IOCs). Hybrid IOCs comprise an organic phase and an inorganic phase that are chemically linked together. Such hybrids possess, in varying degrees, properties of both phases. The properties ultimately exhibited by the hybrid IOC are determined by a number of factors. Such factors include, for example, the identity and concentration of the inorganic and organic phases comprising the hybrid, the morphology (i.e., microstructure) of each of the inorganic and the organic phases, the morphology of the resulting hybrid, and the structure of a coupling agent advantageously used to chemically link the inorganic and organic phases to one another.
It will be appreciated that the particular mix of physico-chemical properties required of a hybrid IOC will vary with its intended use. For example, in some applications, the optical and thermal properties of a hybrid IOC are of particular importance, while in other applications, the dielectric and thermal properties are important but optical properties are inconsequential. As there have been relatively few controlled studies of hybrid inorganic/organic materials, little systematic guidance or methodology is available for selecting and synthesizing a hybrid IOC that possesses specific properties for use in a particular application.
In view of the above, the art would benefit from a method by which hybrid IOCs can be “engineered” for use in a particular application.
SUMMARY OF THE INVENTION
The present invention provides a systematic method for “engineering” hybrid inorganic/organic compounds (IOCs) to bit specific physico-chemical properties as may be desired for a particular materials application. Such hybrid inorganic/organic compounds comprise, in some embodiments, an organic phase in the form of a polymer matrix and an inorganic phase that is chemically linked thereto. The inorganic phase and the organic phase are generated from respective inorganic phase and organic phase precursors. Linking of the inorganic and organic phases is advantageously promoted via the use of a coupling agent.
A method in accordance with the present teachings advantageously applies a structured, “modular” approach to synthesizing, hybrid IOCs. In one embodiment, given a specific application, (i) desired physico-chemical properties to be possessed by the hybrid IOC are defined; (ii) candidate inorganic and organic phases are selected; (iii) the morphology of those phases is controlled via “microstructural engineering” such that the phases collectively bit the physico-chemical properties required of the hybrid IOC; and (iv) the morphology of the hybrid IOC is controlled via “macrostructural engineering” such that the physico-chemical properties collectively possessed by the phases are exhibited by the hybrid IOC.
As more and more hybrid IOCs are engineered by a method in accordance with the present teachings, a library or catalogue of “modules” is advantageously amassed. Each of such modules defines a composition and morphology for one of the constituent elements (i.e., the inorganic phase, the organic phase or the coupling agent) to obtain a specific set of physico-chemical properties. Presented with a new application for a hybrid IOC, modules can be suitably selected from the library, as a function of the desired physico-chemical properties, to synthesize a hybrid IOC appropriate for the application.
In one illustrative embodiment, the present methods are applied to synthesizing hybrid IOCs suitable for replacing conventional glass in a variety of specific applications.


REFERENCES:
patent: 5116703 (1992-05-01), Badesha et al.
patent: 5231156 (1993-07-01), Lin
patent: 5384376 (1995-01-01), Tunney et al.
patent: 5412043 (1995-05-01), Novak et al.
patent: 5514734 (1996-05-01), Maxfield et al.
patent: 5527871 (1996-06-01), Tani et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for hybrid inorganic/organic composite materials does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for hybrid inorganic/organic composite materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for hybrid inorganic/organic composite materials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2574761

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.