Isolated nucleic acid molecules which encode T cell...

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S069100, C435S069520, C435S252300, C435S254110, C435S320100, C435S325000

Reexamination Certificate

active

06331613

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to newly isolated nucleic acid molecules and their uses. The nucleic acid molecules are shown to be upregulated by the cytokine interleukin-9 (“IL-9”). Also disclosed are the proteins encoded thereby. They are described as T Cell Derived Inducible Factors (“TIFs”). These nucleic acid molecules encode proteins which induce STAT activation in cells. They can be used, for example, in the stimulation of regeneration of targeted tissues. Further, their inhibitors or antagonists can be used to retard, prevent or inhibit differentiation of other tissues.
BACKGROUND AND PRIOR ART
The last decade has seen knowledge of the immune system and its regulation expand tremendously. One area of particular interest has been that of research on the proteins and glycoproteins which regulate the immune system. One of the best known families of these molecules are the cytokines. These are molecules which are involved in the “communication” of cells with each other. The individual members of the cytokine family have been found to be involved in a wide variety of pathological conditions, such as cancer and allergies. Whereas sometimes the cytokines are involved in the pathology of the condition, they are also known as being therapeutically useful.
Interleukins are one type of cytokine. The literature on interleukins is vast. An exemplary, but by no means exhaustive listing of the patents in this area includes U.S. Pat. No. 4,778,879 to Mertelsmann et al.; U.S. Pat. No. 4,490,289 to Stern; U.S. Pat. No. 4,518,584 to Market al.; and U.S. Pat. No. 4,851,512 to Miyaji et al., all of which involve interleukin-2 or “IL-2.” Additional patents have issued which relate to interleukin-1 (“IL-1”), such as U.S. Pat. No. 4,808,611 to Cosman. The disclosure of all of these patents are incorporated by reference herein. More recent patents on different interleukins include U.S. Pat. No. 5,694,234 (IL-13); U.S. Pat. No. 5,650,492 (IL-12); U.S. Pat. Nos. 5,700,664, 5,371,193 and U.S. Pat. No. 5,215,895 (IL-11); U.S. Pat. Nos. 5,728,377, 5,710,251, 5,328,989 (IL-10); U.S. Pat. Nos. 5,580,753, 5,587,302, 5,157,112, 5,208,218 (IL-9); U.S. Pat. Nos. 5,194,375, 4,965,195 (IL-7); U.S. Pat. Nos. 5,723,120, 5,178,856 (IL-6), and U.S. Pat. No. 5,017,691 (IL-4). Even a cursory review of this patent literature shows the diversity of the properties of the members of the interleukin family. One can assume that the larger cytokine family shows even more diversity. See, e.g., Aggarwal et al., ed., Human Cytokines: Handbook For Basic And Clinical Research (Blackwell Scientific Publications, 1992), Paul, ed., Fundamental Immunology (Raven Press, 1993), pg 763-836, “T-Cell Derived Cytokines And Their Receptors”, and “Proinflammatory Cytokines and Immunity.” All cited references are incorporated by reference.
The relationships between various cytokines are complex. As will be seen from the references cited herein, as the level of a particular cytokine increases or decreases, this can affect the levels of other molecules produced by a subject, either directly or indirectly. Among the affected molecules are other cytokines.
The lymphokine IL-9, previously referred to as “P40,” is a T-cell derived molecule which was originally identified as a factor which sustained permanent antigen independent growth of T4 cell lines. See, e.g., Uyttenhove et al., Proc. Natl. Acad. Sci. 85: 6934 (1988), and Van Snick et al., J. Exp. Med. 169: 363 (1989), the disclosures of which are incorporated by reference, as is that of Simpson et al., Eur. J. Biochem. 183: 715 (1989).
The activity of IL-9 was at first observed on restricted T4 cell lines, failing to show activity on CTLs or freshly isolated T cells. See, e.g., Uyttenhove et al., supra, and Schmitt et al., Eur. J. Immunol. 19: 2167 (1989). This range of activity was expanded when experiments showed that IL-9 and the molecule referred to as T cell growth Factor III (“TCGF III”) are identical to MEA (Mast Cell Growth Enhancing Activity), a factor which potentiates the proliferative response of bone marrow derived mast cells to IL-3, as is described by Hültner et al., Eur. J. Immunol. and in U.S. patent application Ser. No. 498,182 filed Mar. 23, 1990, the disclosures of both being incorporated by reference herein. It was also found that the human form of IL-9 stimulates proliferation of megakaryoblastic leukemia. See Yang et al., Blood 74: 1880 (1989). Recent work on IL-9 has shown that it also supports erythroid colony formation (Donahue et al., Blood 75(12): 2271-2275 (Jun. 15, 1990)); promotes the proliferation of myeloid erythroid burst formation (Williams et al., Blood 76: 306-311 (Sep. 1, 1990); and supports clonal maturation of BFU-E's of adult and fetal origin (Holbrook et al., Blood 77(10): 2129-2134 (May 15, 1991)). Expression of IL-9 has also been implicated in Hodgkins's disease and large cell anaplastic lymphoma (Merz et al., Blood 78(8): 1311-1317 (Sep. 1, 1990). Genetic analyses of mice that were susceptible or resistant to the development of bronchial hyperresponsiveness have unraveled a linkage with the IL-9 gene as well as a correlation between IL-9 production and susceptibility in this model (Nicolaides et al., Proc. Natl. Acad. Sci. USA, 94, 13175-13180, 1997). Human genetic studies also point to the IL-9 and IL-9R genes as candidates for asthma (Doull et al., Am. J. Respir. Crit. Care Med., 153, 1280-1284, 1996; Holroyd et al., Genomics 52, 233-235, 1998). Secondly, IL-9 transgenic mice allowed for the demonstration that increased IL-9 expression result in lung mastocytosis, hypereosinophilia, bronchial hyperresponsiveness and high levels of IgE (Temann et al., J. Exp. Med. 188, 1307-1320, 1998; Godfraind et al., J. Immunol. 160, 3989-3996, 1998; McLane et al., Am. J. Resp. Cell. Mol. 19:713-720 (1999). Taken together, these observations strongly suggest that IL-9 plays a major role in this disease Additional work has implicated IL-9 and muteins of this cytokine in asthma and allergies. See, e.g. PCT Application US96/12757 (Levitt, et al), and PCT US97/21992 (Levitt, et al), both of which are incorporated by reference..
IL-9 is known to affect the levels of other molecules in subjects. See Louahed et al., J. Immunol. 154: 5061-5070 (1995; Demoulin et al., Mol. Cell. Biol. 16: 4710-4716 (1996), both incorporated by reference. It will be recognized that the molecules affected have their own functions in biological systems. For example, Demoulin et al. show that many of the known activities of IL-9 are mediated by activation of STAT transcription factors. As such, there is continued interest in trying to identify molecules whose presence and/or level is affected by other molecules, such as cytokines.
The disclosure which follows describes such molecules. It was found that nucleic acid molecules encoding the proteins of the invention were expressed in the presence of IL-9, but not in its absence. Hence, these molecules are, inter alia, “markers” for the expression or effect of IL-9 in a subject. The molecules are referred to as T Cell Derived Inducible Factors or “TIFs” hereafter. These and other features of the invention will be seen in the disclosure which follows.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Isolated nucleic acid molecules which encode T cell... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Isolated nucleic acid molecules which encode T cell..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Isolated nucleic acid molecules which encode T cell... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2574219

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.