Method of making a catalytic converter for use in an...

Metal working – Method of mechanical manufacture – Catalytic device making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S515000, C029S465000, C029S466000

Reexamination Certificate

active

06317976

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to catalytic converters for purifying exhaust gases, and more particularly to method for forming catalytic converters having non-round honeycomb substrates wherein the method results in minimal buckling of the converter's metal shell and uniform compressive forces being exerted on the encircling mat and the honeycomb substrate.
2. Description of the Related Art
As is well known, the purification of exhaust gases from internal combustion engines, particularly in motor vehicles, is generally achieved by an exhaust gas purification system in which a ceramic element having a honeycomb cell structure acts a catalyst carrier. More precisely, this honeycomb cell structure is covered with a catalyst, that contains a precious metal which functions, in the presence of O
2
, to convert noxious components of the exhaust gas, such as HC and CO, to CO
2
and H
2
O. The honeycomb cell structure is housed within a gas-tight, sheet metal or cast-metal heat resistant housing or can or shell.
Honeycomb structures currently employed are typically comprised of a ceramic material such as cordierite; a brittle material exhibiting limited mechanical strength. For this reason, catalytic converters in use today, typically include a supporting mat that is wrapped around the periphery of the honeycomb. This resilient material, which distributes any compressive forces uniformly on the ceramic, typically expands as the temperature increases. This being the case, the compressive supporting pressure on the honeycomb therefore increases at elevated temperatures, and in some degree compensates for the thermal expansion of the outer metal shell. Since the metal shell expands more than the enclosed ceramic honeycomb, this mat expansion with temperature rise prevents the honeycomb from becoming loose in the shell.
There are known in the art various methods of fabricating catalytic converters as described above, including inserting tight-fitting mat-wrapped honeycombs into tubular shells (see, for example U.S. Pat. No. 4,093,423 (Neumann)), as well as utilizing two metal shell halves which are closed around a mat-wrapped honeycomb and thereafter welded together; see for example U.S. Pat. No. 5,273,724 (Bos). Another such method of fabrication, commonly referred to as the “tourniquet wrap” method involves forming a rectangular flat-sheet metal piece into a cylindrical body having a lap joint. A mat-wrapped honeycomb is loosely inserted into the cylindrical metal can and the combined assembly is pulled together to form the desired mat compression. Thereafter, the lap joint is welded together thereby holding the can at the desired compression while at the same time preventing gas leakage; see for Example U.S. Pat. No. 5,082,479 (Miller).
Although round substrates have some advantages in terms of uniform mounting and fundamental strength, the available space in an under-car and motorcycle applications has lead to the use of non-round shapes which are capable of providing sufficient catalyst surface area within the limited under-car and motorcycle space available. An inherent deficiency of the aforementioned formation techniques when used for non-round, oval or similar, shapes is uneven or non-uniform compressive closing of the encircling mat. Specifically, the mat portion located along the substrate's flatter side, i.e., along the minor axis, is less compressed than those rounder, smaller end portions of the substrate, i.e., along the major axis. On the one hand, the inadequate compression of the flatter sides results in an axial retention, i.e., the restraining forces which hold the substrate in place, which is decidedly lower than desirable and thus decreases product durability. On the other hand, the over-compressed small ends, areas where the mat gap is the small, lead to an increased risk of substrate failure due to point loading and localized compressive failure of the honeycomb structure, i.e., crushing of the brittle honeycomb structure.
This non-uniform compression problem has been addressed by various means including the use of deformed metal cans which provide less clearance along the flat sides, as well as the use of ribbing in the configuration which increases the rigidity of the can in the flatter areas.
A recent innovation disclosed in U.S. patent application Ser. No. 09/013,976 (Schmitt) discloses a method for manufacturing a catalytic converter having a non-round monolithic ceramic substrate. The first step of the method involves wrapping a non-round monolithic ceramic substrate in a sufficient amount of supporting mat material to substantially cover the peripheral surface of the substrate. Next, the wrapped substrate is thereafter inserted into a metal shell that substantially surrounds the wrapped substrate and at least one force redistribution plug is placed on the peripheral surface of the metal shell. Lastly, the metal shell is compressively closed around the substrate and the metal shell is secured to provide a gas tight seal and to hold the compressive stress.
This method generally results in a more uniform compression being exerted on the wrapped substrate, however, the metal shell, upon compression, is subject to unbalanced forces at the nodal points of these oval converters, i.e., points where the curvature of transitions from a small to large curvature. The result of these unbalanced forces is that the metal shell is typically subject to buckling along its periphery. Although this method alleviates the over/under compression problem somewhat, the method is unnecessarily complex, and is subject to the aforementioned buckling, and as such the search for better and simpler solutions to uniform oval canning has continued.
SUMMARY OF THE INVENTION
It is therefore an objective of the present invention to overcome the problems and shortcomings inherent in current methods of forming non-round catalytic converters; i.e., buckling or deformation of the metal shell upon compression. In other words, the formation of non-round catalytic converters that results in balanced forces being exhibited upon the metal shell upon compression and which exhibits a substantially uniform compressive load upon the encircling mat and the honeycomb structure thereby avoiding localized compressive failure, inadequate axial retention of the honeycomb substrate, and buckling of the metal shell.
This objective, as well as other objectives which will become apparent in the discussion that follows, are achieved, in accordance with the present invention by utilizing a resizing die, in the compressive closing formation, which effectively results in both balanced forces being exerted on the metal shell and uniform compression of the honeycomb substrate. In general, the method of manufacturing these catalytic converters having non-round honeycomb substrates comprises the following steps: (1) wrapping a non-round monolithic ceramic substrate, having a major and a minor orthogonal axis, in a sufficient amount of the supporting mat material whereby the substrate's peripheral surface is substantially covered; (2) inserting the wrapped substrate into a metal shell, having a plurality of nodal points, and which substantially surrounds the wrapped substrate; (3) placing the metal shell in a resizing die having a plurality of fingers, and associated gaps therebetween, extending axially along substantially the entire surface of the metal shell whereby the nodal points of the metal shell are positioned along a portion of a die finger and the placement of the metal shell and wrapped substrate, within the resizing die is such that the axes of the resizing die are angularly offset from the major and minor axes of the substrate; (4) compressively closing the metal shell around the wrapped substrate by displacing the fingers of the resizing die radially inward to provide a gas tight seal and to hold the compressive stress by; and, (5) securing the metal shell to provide a gas tight seal and to hold the compressive stress.


REFERENCES:
patent: 3441382 (1

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of making a catalytic converter for use in an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of making a catalytic converter for use in an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of making a catalytic converter for use in an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2573027

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.