Modular articulated robot structure

Electricity: motive power systems – Positional servo systems – Program- or pattern-controlled systems

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C318S568120, C318S561000, C318S587000, C901S001000, C901S008000, C901S011000, C901S023000, C901S046000, C901S028000

Reexamination Certificate

active

06323615

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of robotics and, more particularly, to a modular articulated robot structure.
2. Description of the Prior Art
In the prior art it is known to have robot systems which are modular, reconfigurable and expandable to thus improve the flexibility and versatility thereof. For instance, U.S. Pat. No. 5,523,662 issued to Goldenberg et al. on Jun. 4, 1996, discloses a manipulator arm formed of a number of independent rotary joints releasably connected to each other by means of elongated connector members. The manipulator arm may be disassembled and reassembled in order to obtain different arm configurations. More particularly, each joint generally includes a L-shaped member and an inverted U-shaped member pivotally movable with respect to the L-shaped member. A motor having a drive shaft is mounted to the L-shaped member for pivoting the inverted U-shaped member relative to the L-shaped member. The inverted U-shaped member includes a pair of opposed downwardly extending connecting plates which are pivotally connected respectively to an upwardly extending portion of the L-shaped member and to the drive shaft of the motor. Accordingly, the U-shaped member is supported by both the L-shaped member and the drive shaft of the motor, whereby the drive shaft is submitted to workloads and static loads, and thus the overall structural rigidity of the manipulator arm is compromised.
Therefore, it would be advantageous to provide a rotary joint having a motor which is configured and positioned to transmit a pivotal force without supporting any load other than the rotational load.
Furthermore, the aforementioned L-shaped and inverted U-shaped members do not provide support to each other at certain relative positions thereof which would increase the rigidity of the above described flexible manipulator arm in these positions, as this increased rigidity may be required to accomplish particular tasks.
It would also be very suitable to have a modular robot structure wherein each module is provided with mating electrical connectors, such as pin connectors, to enable quick connection and disconnection of adjacent modules.
SUMMARY OF THE INVENTION
It is therefore an aim of the present invention to provide a compact rotary module forming part of an articulated robot structure and having a motor which is essentially not submitted to loads other than the rotational loads induced by the motor itself.
It is also an aim of the present invention to provide a robot system having a flexible architecture.
It is also an aim of the present invention to provide a displaceable robot system which is adapted to evade obstacles and which offers increase maneuverability.
It is a further aim of the present invention to provide a robot system which is modular, expandable and reconfigurable.
It is a still further aim of the present invention to provide a modular robot structure which is designed to offer ease of assembly and disassembly.
It is a still further aim of the present invention to provide a flexible robot structure which is adapted to be configured to provide sufficient structural rigidity to perform a particular task.
It is a still further aim of the present invention to provide a robot system which provides a relatively lightweight structure.
It is a still further aim of the present invention to provide a robot system which is relatively simple and economical to manufacture.
Therefore, in accordance with the present invention, there is provided a module for forming a segment of an articulated robot structure, comprising first and second structural members, idle axle means for pivotally mounting said second structural member to said first structural member, motor means mounted to said first structural member and adapted for pivoting said second structural member about said axle means and relative to said first structural member.
Also in accordance with the present invention, there is provided a module for forming a segment of an articulated structure, comprising first and second structural members pivotally mounted together, motor means for imparting a rotational movement to said second structural member relative to said first structural member, said first and second structural members having cooperating abutment means for providing substantially uniform support to said second structural member when rotated to a limit position thereof.
Further in accordance with the present invention, there is provided an articulated structure comprising at least two serially connected modules which each comprise first and second structural members pivotally mounted to one another, and motor means for imparting a rotational movement to said second structural member relative to said first structural member, said first structural member of each module defining abutment means against which said first structural member of an adjacent module may be supported when said second structural member connecting said first structural members of two adjacent modules is rotated to a limit position thereof.
Still further in accordance with the present invention, there is provided an extendable and contractible module for forming a segment of an articulated robot structure, comprising first and second structural members linearly moveable with respect to each other, at least one of said structural members being adapted to be physically and electrically coupled to another module, and motor means for imparting relative linear motion to said first and second structural members.
Still further in accordance with the present invention, there is provided a module for forming a segment of a robot structure, comprising a pair of spaced-apart connecting plates joined at opposed end portion thereof by a pair of side plates, at least one of said connecting plates including attachment means for releasably attaching said module to another module and further including electrical connectors for mating engagement with connectors of another module, said connectors being connected to conductor means for enabling control commands to be fed to and through said module, wheel means for supporting and moving said module on a supporting surface, and motor means for driving said wheel means in response to control commands sent to said module.
Still further in accordance with the present invention, there is provided a flexible robot structure comprising a number of serially connected rotary modules which each include first and second end portions adapted to mate with end portions of adjacent rotary modules, connecting means for pivotally connecting said first and second end portions together, motor means for driving said rotary modules, and control means for controlling movement of said rotary modules, whereby said motor means may be operated to bring said first end portion of a module disposed at a first end of said flexible robot structure in mating engagement with a second end portion of another module disposed at a second end portion so as to for a loop configuration.
Still further in accordance with the present invention, there is provided a mobile modular robot comprising at least one wheeled or tracked module adapted to support and displace said mobile modular robot on a supporting surface, attachment means for pivotally connecting support modules at opposed front and rear ends of said wheeled or tracked module, motor means for driving said wheeled or tracked module and pivoting said support modules relative to said wheeled or tracked module, control means for controlling movements of said wheeled or tracked module and of said support modules, whereby said mobile modular robot may run on said wheeled or tracked module or, alternatively, said support module may be pivoted so as to support said wheeled or tracked module in a raised position over the supporting surface and subsequently actuated to provide legged locomotion.


REFERENCES:
patent: 3712481 (1973-01-01), Harwood
patent: 4310958 (1982-01-01), Balaud et al.
patent: 4561816 (1985-12-01), Dingess
patent: 4685349 (1987-

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Modular articulated robot structure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Modular articulated robot structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Modular articulated robot structure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2568394

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.