Detachable aneurysm neck bridge (I)

Surgery – Instruments

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S200000, C606S194000, C606S213000

Reexamination Certificate

active

06193708

ABSTRACT:

FIELD OF THE INVENTION
This invention is a device for bridging the neck of either a wide-necked or narrow-necked aneurysm in the vasculature. In general, it is a device used to stabilize the presence of vaso-occlusive devices such as helically wound coils in the aneurysm. The vaso-occlusive coils are preferably delivered by a core wire which is linked to the coils by an electrolytically severable joint. The core wire will often be insulated. The retainer assembly itself is also attached to another electrolytically severable joint and typically has a number of array elements which are intended to be resident within the aneurysm after the device is deployed from the distal end of a catheter. After deployment of this retainer, the aneurysm is at least partially filled with a vaso-occlusive device such as helically wound coils.
BACKGROUND OF THE INVENTION
Different implantable medical devices have been developed for treating a number of ailments associated with body lumens. In particular, occlusive devices are useful in filling vascular or other body spaces. Some body spaces, such as vascular aneurysms, are formed due to a weakening in the wall of an artery. Often these aneurysms are the site of internal bleeding and, catastrophically, the site of strokes. A variety of different embolic agents are known as, at least arguably, suitable for treatment of these openings. These treatments are commonly known as “artificial vaso-occlusion.” One such class of embolic agents includes injectable fluids or suspensions, such as microfibrillar collagen, various polymeric beads, and polyvinylalcohol foam. These polymeric agents may additionally be crosslinked (sometimes in vivo) to extend the persistence of the agent at the vascular site. These agents are often introduced into the vasculature through a catheter. After such introduction, materials there form a solid space-filling mass. Although some provide for excellent short term occlusion, many are thought to allow vessel recanalization due to absorption of polymer into the blood. Another procedure in which a partially hydrolyzed polyvinylacetate (PVA) is dissolved in an ethanol solvent and injected into a desired vascular site is found in Park et al. U.S. patent application Ser. No. 08/734,442, (now U.S. Pat. No. 5,925,683) filed Oct. 17, 1996, for “LIQUID EMBOLIC AGENTS”.
Other materials such as hog hair and suspensions of metal particles have also been suggested and used by those wishing to form occlusions.
Other materials including polymer resins, typically cyanoacrylates, are also employed as injectible vaso-occlusive materials. These resins are typically mixed with a radio-opaque contrast material or are made radio-opaque by the addition of a tantalum powder. Their use is fraught with problems in that placement of the mixture is quite difficult. These materials are ones which crosslink with the human body. Inadvertent embolisms in normal vasculature (due to the inability of controlling the destination of the resins) is not uncommon. The material is also difficult or impossible to retrieve once it has been placed in the vasculature.
Over the past few years, advancements in the artificial occlusions of vessels and aneurysms have occurred due to the delivery and implantation of metal coils as vaso-occlusive devices. Implantable metal coils that are useful as artificial occlusion devices in vasculature lumens or aneurysms are herein referred to as “vaso-occlusions coils.”
Vaso-occlusions coils are generally constructed of a wire, usually made of a metal or metal alloy, that is wound to a helix. Many such devices are introduced to the selected target site through a catheter in a stretched linear form. The vaso-occlusive device assumes an irregular shape upon discharge of the device from the distal end of the catheter a variety of vaso-occlusive coils and braids are known. For instance, U.S. Pat. No. 4, 994,069, to Ritchart et al., shows a flexible, preferably coiled, wire for use in small vessel vaso-occlusion. Unlike vaso-occlusive coils used prior to that time, Ritchart taught a coil which is fairly soft and is delivered to the site using a pusher within a catheter lumen. Upon discharge from the delivery catheter, the coil may undertake any of the number of random or regular configurations used to fill the site. The coils are used for small vessel sites, e.g., 0.5-6 mm in diameter. The coils themselves are described as being between 0.010 and 0.030 inches in diameter. The length of the coil wire is typically 15 to 20 times the diameter of the vessel to be occluded. The wire used to make up the coils may be, for instance, 0.002 to 0.006 inches in diameter. Tungsten, platinum, and gold threads or wires are said to be preferred. These coils have a variety of benefits including the fact that they are relatively permanent, they may be easily imaged radiographically, they may be located at a well defined vessel site, and they can be retrieved.
It is common that these vaso-occlusive devices be delivered through microcatheters such as the type disclosed in U.S. Pat. No. 4,739,768, to Engelson. These microcatheters track a guidewire to a point just proximal or within the desired site for occlusion. The coil is advanced through the microcatheter (once the guidewire is removed) and out the distal end hole so to at least partially fill the selected space and create an occlusion.
In addition to vaso-occlusion devices or coils having predetermined secondary shapes that dictate in part their space filling mechanism, other vaso-occlusive coils have been disclosed that take on random shapes when expelled from a delivery sheath. One such type is a vaso-occlusive coil often referred to as “a liquid coil”. One example of such a vaso-occlusive coil is disclosed in pending U.S. patent application Ser. No. 08/413,970, (now abandoned) filed Mar. 30, 1995. This document describes a very soft and flexible coil which is flow-injectable through a delivery catheter using, e.g., saline solution.
In addition to the various types of space filling mechanisms and geometries of vaso-occlusive coils, other particularized features of coil designs, such as mechanisms for delivering vaso-occlusive coils through delivery catheters and implanting them in a desired occlusion site, have also been described. The examples of categories of vaso-occlusive coils based upon their delivery mechanisms include pushable coils, mechanically detachable coils, and electrolytically detachable coils.
One example of the type of vaso-occlusive coil referred to above as the “pushable coil” is disclosed in Ritchart et al., discussed above. Pushable coils are commonly provided in a cartridge and are pushed or “plunged” from the cartridge into a delivery catheter lumen. A pusher advances the pushable coil through and out of the delivery catheter lumen and into the site for occlusion.
Mechanically detachable vaso-occlusive devices are typically integrated with a pusher rod and are mechanically detached from the distal end of that pusher after exiting a delivery catheter. Examples of such mechanically detachable vaso-occlusive coils are found in U.S. Pat. No. 5,261,916 to Engelson or U.S. Pat. No. 5,250,071 to Palermo.
Finally, examples of electrolytically detachable vaso-occlusive devices may be found in U.S. Pat. Nos. 5,122,136 and 5,354,295, each to Guglielmi et al. In these devices, the vaso-occlusive portion of the assembly is attached to a pusher via a small electrolytically severable joint. The electrolytically severable joint is severed by the placement of an appropriate voltage on the core wire. The joint erodes in preference either to the vaso-occlusive device itself or to the pusher core wire. The core wire is often simply insulated to prevent the electrolytic response caused by the imposition of electrical current.
Further improvement upon the electrolytical detachment mechanism described above is found in U.S. patent application Ser. No. 08/205,512, filed Mar. 3, 1994. This document describes superimposing a modest alternating current upon the direct current signal. A sensing circuit monito

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Detachable aneurysm neck bridge (I) does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Detachable aneurysm neck bridge (I), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Detachable aneurysm neck bridge (I) will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2568155

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.