Lightweight electrochromic mirror

Optical: systems and elements – Optical modulator – Light wave temporal modulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S265000, C359S266000, C359S271000, C362S135000

Reexamination Certificate

active

06195194

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention concerns lightweight, electrochromic (EC) mirrors for vehicles.
There is a constant need for weight reduction in vehicles in order for vehicle manufacturers to stay competitive. The reasons are many and varied, but include such things as meeting customer demands for improved gas mileage through reduced vehicle weight; obtaining the benefit of government incentives through improved gas mileage, reduced pollution, and reduced curb weight; reducing part cost by reducing material costs; and other engineering and marketing considerations. Concurrently, there are reasons to improve mirrors in ways which may increase weight, such as to increase the size of mirrors to increase the reflected viewing area; to increase the structural strength of mirror elements to reduce distortion of reflected images; and to increase the structural support provided for mirrors to withstand vibration and pendulum-like harmonic movement of the mirrors when a vehicle is moving along a highway. Clearly, there is tension between the need to reduce vehicle weight and the need to improve mirrors.
In addition to the above, vehicle mirrors have environmental problems unique to their application. Automotive mirrors must be stable under high vibration conditions and also must remain undistorted in a wide range of temperatures and operating conditions in order to be effective. Due to inherent limitations in vehicle design and mirror support design, most interior and exterior rearview mirrors are supported in cantilever. However, the dynamic vibrational stability of a mirror is inversely proportional to its cantilevered mass and, accordingly, vibration is often a problem in vehicle mirrors, particularly in heavier mirrors. Therefore, lighter mirror weights and those having shorter cantilever arms are desired. Improvements have been made in mirror housings to make them lighter, stiffer, and more aerodynamic. However, glass remains a large percentage of the overall weight of mirrors. The reason glass continues to be used is because it has high transmission of light and it is very durable. Unfortunately, glass has a relatively high specific gravity. Further, glass is somewhat flexible and deformable, unless the thickness of glass mirror elements is kept at or above the 2.2 mm thickness dimension that most conventional mirrors use. In other words, prior to the present inventive improvements, the thickness of glass must be maintained at thickness levels sufficient to provide adequate stiffness in order for the glass to remain rigidly flat enough to support a reflector to provide a distortion free reflection.
Vehicle manufacturers have recently begun manufacturing vehicles with interior and exterior EC mirrors due to their advantages over non-EC mirrors. EC mirrors have the advantage of undergoing controlled dimming to eliminate glare from bright lights, such as to eliminate glare in a driver's eyes from the headlights of other vehicles. However, EC mirrors tend to be heavy because they utilize two glass elements with an EC material (solution phase, solid phase, gel phase, or a hybrid thereof) therebetween. The reflectance of the mirror is controlled by creating an electrical voltage potential across the EC layer as glaring lights are sensed behind the vehicle. Unfortunately, EC mirrors tend to weigh more than conventional mirrors due to the “double thickness” of glass.
There are significant mounting problems associated with using “extra” thin glass elements (i.e., glass elements having a thickness of about 1.6 mm or less), because these extra thin glass elements are so thin that they are susceptible to deformation and will unacceptably flex in response to relatively low stress. Non-uniform deformation of the glass elements in a direction perpendicular to the surface of the glass elements of as little as a tenth of a millimeter over a small area (i.e., relatively sharp or sudden deformation) can result in noticeable, measurable, and objectionable distortion of reflections. The noticeability of these deformations will depend upon the sharpness of the deformation, its length and location on the mirror, and numerous other factors, making it difficult to quantify these deformations. However, this does not detract from their significance and, in fact, it adds to the difficulty in dealing with them. Notably, these unacceptable deformations can occur at any time in the EC mirror manufacturing process, and can even occur well after the mirror manufacturing process, such as during assembly of the mirror into a mirror housing or onto a vehicle or during normal “post-assembly” relaxation of components. Deformations can also occur when thermoplastics creep in reaction to relaxation of internal and external stresses and/or when distortion occurs while in service (e.g., due to thermal and other environmental stressors). The problem is compounded in thin glass elements separated by a solution phase EC material, a gel phase EC material, or hybrid thereof, because the front and rear elements do not reinforce each other to provide a rigid “compound” beam strength like they would if they were fixedly secured together.
By way of example, in many exterior EC vehicle mirrors, a double-glass-element EC mirror is adhered to a heater pad, which is in turn adhered to a “flat” support surface of a carrier. In exterior mirrors, a power pack adjustment mechanism for motorized adjustment of the angle of the reflector is attached to the carrier (such as by snap-attachment or other quick-attach mechanical means). The assembly (whether or not it includes a power pack adjustment mechanism) is then operably mounted in a mirror housing, which mirror housing is adapted for attachment to the vehicle.
Problematic deformation to a mirror having flex-sensitive thin glass elements can occur, for example, as a result of imperfections in the carrier support surface. These imperfections telegraph through the heater pad and through the adhesive to the rear glass element. Since the flex-sensitive thin glass elements are not particularly stiff, it is very difficult to assemble the thin glass element onto a supporting assembly without unacceptably deforming it. If the carrier is not exceptionally flat and defect free, then the thin glass elements will likely be distorted optically upon being bonded to the carrier. If the carrier is very weak, then the adhesive itself may deform the rear glass element (i.e., the element having the reflector disposed thereon) as the adhesive cures. Even when the carrier is flat, the adhesive can distort and stress the rear glass element as it is positioned on the carrier, such as by entrapping bubbles of air and/or by stressing and distorting the rear glass element during the attachment/bonding/curing process for the adhesive. Another problem occurs when the weak/flat carrier deforms upon attachment to its support structure, such as when a carrier is attached to a power pack actuator. For example, many power pack adjustment mechanisms are snapped to the carrier, with attachment fingers on the carrier resiliently flexing to receive and grip the power pack. However, the attachment fingers extend from a back surface of the carrier. Flexing the attachment fingers results in torsionally bending and distorting a small area of the support surface on the carrier. This results in a slight ripple or surface change in the support surface. These “slight ripples” read through the heater pad to the rear glass element with little or no smoothing or “dampening” by the heater pad, thus causing distortion in the element having the reflector thereon.
Another problem is that attaching the EC mirror subassembly to its housing and/or attaching the mirror housing to the vehicle can cause significant distortions and considerable transfer of stresses to the mirror elements. Yet another problem is that known processes and designs for supporting mirror glass elements are inherently variable and simply are not tolerant of the myriad variances which occur in processing and assembling all of the components. Imper

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Lightweight electrochromic mirror does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Lightweight electrochromic mirror, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Lightweight electrochromic mirror will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2567771

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.