Water-dispersible epoxy resins modified with vinyl acetate...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C523S410000

Reexamination Certificate

active

06235812

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to water-dispersible synthetic resins based on mixtures of copolymers (B) comprising vinyl acetate units and also at least one unit selected from the group of vinyl alcohol, vinyl acetal and ethylene units, with epoxy resins (A) as binders, in particular for electrodeposition coating baths. Coatings which comprise these synthetic resins feature excellent corrosion protection, especially at edges of substrates, and outstanding resistance to mechanical stress, for example stone chipping.
BACKGROUND OF THE INVENTION
The electrodeposition coating is a sufficiently known process for coating the surface of electrically conducting substrates (compare in this context, for example: Glasurit Handbuch Lacke und Farben, Curt R. Vincentz Verlag, Hanover, 1984, Pages 374 to 384 and pages 457 to 462, and DE-A-35 18 732, DE-A-35 18 770, EP-A-0 040 090, EP-A-0 012 463, EP-A-0 259 181, EP-A-0 433 783 and EP-A-0 262 069). The process is employed to coat metal objects, especially for priming automobile bodies, or else for coating conductive plastics.
The coating materials used in the course of electrodeposition coating generally comprise, as binders, amino- or carboxyl-containing synthetic resins, dispersibility in water being obtained by the neutralization of the amino or carboxyl groups. Special grinding resins, and optionally further, non water-dispersible constituents, such as polymers, plasticizers, pigments, fillers, additives and auxiliaries, are further possible constituents of the electrodeposition coating materials. The crosslinkers employed in the electrodeposition coating materials are either non-dispersible in water or can be water-dispersible, the electrodeposition coating materials being externally crosslinking or else autocrosslinking or being curable by condensation.
Through modification of the binders, selection of the crosslinkers and variation in the composition of the constituents of the electrodeposition coating material, the properties of the coating, for example corrosion protection, adhesion and evenness, are influenced. There are thus known, in particular, electrodeposition coating materials where polymer microparticles or polymer powders—suspended or incorporated by dispersion—are added with the aim of favourably influencing the corrosion protection, especially at edges, the adhesion, especially the impact strength, and the evenness.
Thus it is recommended in EP-A-0 259 181 to overcome the heightened susceptibility to corrosion observed at edges of the coated substrate and caused by an insufficiently thick coating film by adding polymer microgels, the polymer microparticles being characterized by a softening point which is at least 10 degrees C above the bath temperature, by a solubility parameter which differs by not more than 1.0 from the solubility parameter of the depositable synthetic resin, by a refractive index which deviates by 0.02-0.3 from the refractive index of the depositable synthetic resin, and by a crosslinking density of 0.01-5.05 mmol/g, and where, for example, poly(meth)acrylate copolymers in combination with ethylenically unsaturated vinyl compounds can be part of such microgels.
DE-B-26 50 611, EP-A-0 052 831, DE-A-39 40 782, EP-A-0 433 783, SU-A-436890, JP-A-53094346, JP-A-79028410 and JP-A-0624820 describe electrodeposition coating compositions with polymer powders which can be suspended or incorporated by dispersion and which are predominantly free from ionic groups, optionally are able to melt in the course of stoving, and are noncrosslinked or crosslinked, the coating compositions additionally comprising water-dispersible synthetic resins that are typical for electrodeposition coatings. The particle sizes of such polymer powders can in this case markedly exceed the particle sizes of the water-dispersible synthetic resins of known electrodeposition coating materials: the average particle diameter in JP-A-0624820 is from 1 to 50 micrometers, and in DE-A-39 40 782 or EP-A-0 433 783 is from 0.1 to 100 micrometers.
Examples of such pulverulent polymers are polyesters, polyolefins, polystyrene, poly(meth)acrylates, polyurethanes, polyamides, polyvinyl chloride, poly(meth)acrylonitrile, polyoxymethylene, polyvinyl alcohol, butyral resins, ethylene-vinyl acetate copolymers, acrylonitrile-styrene copolymers, acrylonitrile-styrene-butadiene copolymers, polyethylene terephthalate, polybutylene terephthalate, crosslinked urea-aldehyde, triazine-aldehyde and phenol-aldehyde resins, epoxy resins, or cellulose acetate.
In addition, SU-A-661637, SU-A-998592 and SU-A-310952 describe coatings which are formed by cataphoretic deposition of nonaqueous dispersions of polymer powders, the medium used being aliphatic alcohols, such as isopropanol, or tetrachloromethane, and it being possible to add conductive salts, such as ammonium thiocyanate. Polymer powders employed are polyvinyl butyrals.
These coatings are notable for mechanical properties, chemical stability and the properties of adhesion to metallic substrates as known for solvent-containing single-coat systems based on polyvinyl acetal.
The addition to aqueous electrodeposition coating materials of the polymer particles described in EP-A-0 259 181, DE-B-26 50 611, EP-A-0 052 831, EP-A-0 433 783, SU-A-436890, JP-A-53094346, JP-A-79028410 and JP-A-0624820 leads in many cases to improvement in the edge coverage or stone chip protection. In contrast, the corrosion protection afforded by the deposited electrodeposition coating films, especially of the edges, is inadequate despite the improved edge coverage.
Adverse side-effects of the addition of polymer powders are a worsening in the throwing power of the electrode-position coating materials and in the adhesion to the substrate and/or to subsequent coatings, such as coating films applied over them or PVC underbody protection, impairment in the mechanical properties, such as flexibility, extensibility, fracture strength and impact strength, poorer flow properties and a drastic deterioration in evenness.
A disadvantage of the aqueous and nonaqueous formulations described in the patents EP-A-0 25.9 181, DE-B-26 50 611, EP-A-0 052 831, EP-A-0 433 783, SU-A-436890, JP-A-53094346, JP-A-79028410,
JP-A-0624820, SU-A-661637, SU-A-998592 and SU-A-310952 that continues to be important is the inadequate stability of the coating materials, which have a tendency toward sedimentation. In this context, in aqueous electrodeposition coating materials there may be massive covering of the ultrafiltration membranes with coarse polymer particles.
SUMMARY OF THE INVENTION
The problem on which the present invention is based was therefore to provide coating compositions, especially aqueous electrodeposition coating materials comprising cathodically or anodically depositable synthetic resins, which materials give coating films having properties which are improved relative to the prior art.
With the target coating compositions it is the intention, in particular, to obtain coating films which owing to improved rheology give good coverage of the edges of the coated substrates, and provide coatings having good mechanical properties, such as impact toughness (in the context of good stone chip protection), in coating systems including in particular those without added pigment.
This problem is surprisingly solved by coating compositions comprising a binder component, prepared by intensive mixing in a solvent and/or in the melt of:
(A) from 1 to 99.9% by weight of an epoxy resin and
(B) from 0.1 to 99% by weight of a copolymer of vinyl acetate and at least one component selected from the group vinyl alcohol, vinyl acetal and ethylene.
Preferably, components (A) and (B) are mixed at temperatures between 15 and 250 degrees C, preferably between 70 and 200 degrees C, in the presence of epoxy ring-opening catalysts. Preferred epoxy ring-opening catalysts are tertiary amines or neutral salts.
Preferred binders are obtained by subsequent partial or complete reaction of the epoxy groups of the epoxy resin (A) that remain after the mixing operation with amin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Water-dispersible epoxy resins modified with vinyl acetate... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Water-dispersible epoxy resins modified with vinyl acetate..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Water-dispersible epoxy resins modified with vinyl acetate... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2567342

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.