Medical device for delivering a therapeutic substance and...

Coating processes – Medical or dental purpose product; parts; subcombinations;... – Implantable permanent prosthesis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S002250, C427S002280, C427S133000, C264S028000, C264S041000, C264S049000, C264S344000, C264S345000, C264S348000

Reexamination Certificate

active

06187370

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a medical device employing a therapeutic substance as a component thereof. For example, in an arterial site treated with percutaneous transluminal coronary angioplasty therapy for obstructive coronary artery disease a therapeutic antithrombogenic substance such as heparin may be included with a device and delivered locally in the coronary artery. Also provided is a method for making a medical device capable of localized application of therapeutic substances. This invention also relates to a medical device, particularly a stent, having a porous polymeric film with fibrin incorporated therein for enhanced biocompatibility, with or without a therapeutic substance as a component thereof.
Medical devices which serve as substitute blood vessels, synthetic and intraocular lenses, electrodes, catheters and the like in and on the body or as extracorporeal devices intended to be connected to the body to assist in surgery or dialysis are well known. For example, intravascular procedures can bring medical devices into contact with the patient's vasculature. In treating a narrowing or constriction of a duct or canal percutaneous transluminal coronary angioplasty (PTCA) is often used with the insertion and inflation of a balloon catheter into a stenotic vessel. Other intravascular invasive therapies include atherectomy (mechanical systems to remove plaque residing inside an artery), laser ablative therapy and the like. However, this use of mechanical repairs can have adverse consequences for the patient. For example, restenosis at the site of a prior invasive coronary artery disease therapy can occur. Restenosis, defined angiographically, is the recurrence of a 50% or greater narrowing of a luminal diameter at the site of a prior coronary artery disease therapy, such as a balloon dilatation in the case of PTCA therapy. In particular, an intra-luminal component of restenosis develops near the end of the healing process initiated by vascular injury, which then contributes to the narrowing of the luminal diameter. This phenomenon is sometimes referred to as “intimal hyperplasia.” It is believed that a variety of biologic factors are involved in restenosis, such as the extent of the injury, platelets, inflammatory cells, growth factors, cytokines, endothelial cells, smooth muscle cells, and extracellular matrix production, to name a few.
Attempts to inhibit or diminish restenosis often include additional interventions such as the use of intravascular stents and the intravascular administration of pharmacological therapeutic agents. Examples of stents which have been successfully applied over a PTCA balloon and radially expanded at the same time as the balloon expansion of an affected artery include the stents disclosed in U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco and U.S. Pat. No. 4,886,062 issued to Wiktor. Also, such stents employing therapeutic substances such as glucocorticoids (e.g. dexamethasone, beclamethasone), heparin, hirudin, tocopherol, angiopeptin, aspirin, ACE inhibitors, growth factors, oligonucleotides, and, more generally, antiplatelet agents, anticoagulant agents, antimitotic agents, antioxidants, antimetabolite agents, and anti-inflammatory agents have been considered for their potential to solve the problem of restenosis. Such substances have been incorporated into a solid composite with a polymer in an adherent layer on a stent body with fibrin in a separate adherent layer on the composite to form a two layer system. The fibrin is optionally incorporated into a porous polymer layer in this two layer system.
Another concern with intravascular and extracorporeal procedures is the contact of biomaterials with blood which can trigger the body's hemostatic process. The hemostatic process is normally initiated as the body's response to injury. When a vessel wall is injured, platelets adhere to damaged endothelium or exposed subendothelium. Following adhesion of the platelets, these cells cohere to each other preparatory to aggregation and secretion of their intracellular contents. Simultaneously there is activation, probably by electrostatic charge of the contact factors, of the coagulation cascade. The sequential step-wise interaction of these procoagulant proteins results in the transformation of soluble glycoproteins into insoluble polymers, which after transamidation results in the irreversible solid thrombus.
Immobilization of polysaccharides such as heparin to biomaterials has been used to improve bio- and hemocompatibility of implantable and extracorporeal devices. The mechanism responsible for reduced thrombogenicity of heparinized materials is believed to reside in the ability of heparin to speed up the inactivation of serine proteases (blood coagulation enzymes) by AT-III. In the process, AT-III forms a complex with a well defined pentasaccharide sequence in heparin, undergoing a conformational change and thus enhancing the ability of AT-III to form a covalent bond with the active sites of serine proteases such as thrombin. The formed TAT-complex then releases from the polysaccharide, leaving the heparin molecule behind for a second round of inactivation.
Usually, immobilization of heparin to a biomaterial surface consists of activating the material in such a way that coupling between the biomaterial and functional groups on the heparin (—COOH, —OH, —NH
2
) can be achieved. For example, Larm presented (in U.S. Pat. No. 4,613,665) a method to activate heparin via a controlled nitrous acid degradation step, resulting in degraded heparin molecules of which a part contains a free terminal aldehyde group. Heparin in this form can be covalently bound to an aminated surface in a reductive amination process. Although the molecule is degraded and as a result shows less catalytic activity in solution, the end point attachment of this type of heparin to a surface results in true anti-thrombogenicity due to the proper presentation of the biomolecule to the surface. In this fashion, the molecule is freely interacting with AT-III and the coagulation enzymes, preventing the generation of thrombi and microemboli.
However, the attachment and delivery of therapeutic substances such as heparin can involve complicated and expensive chemistry. It is therefore an object of the present invention to provide a medical device having a biocompatible, blood-contacting surface with an active therapeutic substance at the surface and a simple, inexpensive method for producing such a surface. It is also an object of the present invention to provide a medical device having a porous material with fibrin incorporated therein, optionally with an active therepeutic substance at the blood-contacting surface. It is also a further object of the present invention to provide a medical device,-such as an intravascularstent, having a porous polymeric film adhered to the medical device body with fibrin incorporated therein for enhanced biocompatibility.
SUMMARY OF THE INVENTION
This invention relates to a medical device having a blood-contacting surface with a therapeutic substance thereon. Preferably, the device according to the invention is capable of applying a highly localized therapeutic material into a body lumen to treat or prevent injury. The term “injury” means a trauma, that may be incidental to surgery or other treatment methods including deployment of a stent, or a biologic disease, such as an immune response or cell proliferation caused by the administration of growth factors. In addition, the methods of the invention may be performed in anticipation of “injury” as a prophylactic. A prophylactic treatment is one that is provided in advance of any symptom of injury in order to prevent injury, prevent progression of injury or attenuate any subsequent onset of a symptom of such injury.
In accordance with the invention, a device for delivery of localized therapeutic material includes a structure including a porous material and a plurality of discrete particles of a water-insoluble salt of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Medical device for delivering a therapeutic substance and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Medical device for delivering a therapeutic substance and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Medical device for delivering a therapeutic substance and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2565759

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.