Method for performing magnetic resonance angiography with...

Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S309000

Reexamination Certificate

active

06230040

ABSTRACT:

BACKGROUND OF THE INVENTION
The field of the invention is magnetic resonance angiography (“MRA”), and particularly, studies of the human vasculature using contrast agents which enhance the NMR signals.
Diagnostic studies of the human vasculature have many medical applications. X-ray imaging methods such as digital subtraction angiography (“DSA”) have found wide use in the visualization of the cardiovascular system, including the heart and associated blood vessels. One of the advantages of these x-ray techniques is that image data can be acquired at a high rate (i.e. high temporal resolution) so that a sequence of images may be acquired during injection of the contrast agent. Such “dynamic studies” enable one to select the image in which the bolus of contrast agent is flowing through the vasculature of interest. Images showing the circulation of blood in the arteries and veins of the kidneys, the neck and head, the extremities and other organs have immense diagnostic utility. Unfortunately, however, these x-ray methods subject the patient to potentially harmful ionizing radiation and often require the use of an invasive catheter to inject a contrast agent into the vasculature to be imaged. There is also the issue of increased nephro-toxicity and allergic reactions to iodinated contrast agents used in conventional x-ray angiography.
Magnetic resonance angiography (MRA) uses the nuclear magnetic resonance (NMR) phenomenon to produce images of the human vasculature. When a substance such as human tissue is subjected to a uniform magnetic field (polarizing field B
0
), the individual magnetic moments of the spins in the tissue attempt to align with this polarizing field, but precess about it in random order at their characteristic Larmor frequency. If the substance, or tissue, is subjected to a magnetic field (excitation field B
1
) which is in the x-y plane and which is near the Larmor frequency, the net aligned moment, M
z
, may be rotated, or “tipped”, into the x-y plane to produce a net transverse magnetic moment M
t
. A signal is emitted by the excited spins, and after the excitation signal B
1
is terminated, this signal may be received and processed to form an image.
When utilizing these signals to produce images, magnetic field gradients (G
x
G
y
and G
z
) are employed. Typically, the region to be imaged is scanned by a sequence of measurement cycles in which these gradients vary according to the particular localization method being used. The resulting set of received NMR signals are digitized and processed to reconstruct the image using one of many well known reconstruction techniques.
MR angiography (MRA) has been an active area of research. Two basic techniques have been proposed and evaluated. The first class, time-of-flight (TOF) techniques, consists of methods which use the motion of the blood relative to the surrounding tissue. The most common approach is to exploit the differences in magnetization saturation that exist between flowing blood and stationary tissue. Flowing blood, which is moving through the excited section, is continually refreshed by spins experiencing fewer excitation pulses and is, therefore, less saturated. The result is the desired image contrast between the high-signal moving blood and the low-signal stationary tissues.
MRA methods have also been developed that encode motion into the phase of the acquired signal as disclosed in U.S. Pat. No. Re. 32,701. These form the second class of MRA techniques and are known as phase contrast (PC) methods. Currently, most PC MRA techniques acquire two images, with each image having a different sensitivity to the same velocity component. Angiographic images are then obtained by forming either the phase difference or complex difference between the pair of velocity-encoded images.
To enhance the diagnostic capability of MRA a contrast agent such as gadolinium can be injected into the patient prior to the MRA scan. Excellent diagnostic images may be acquired using contrast-enhanced MRA if the data acquisition is properly timed with the bolus passage.
The non-invasiveness of MRA makes it a valuable screening tool for cardiovascular diseases. Screening typically requires imaging vessels in a large volume. This is particularly true for diseases in the runoff vessels of the lower extremity. The field of view (FOV) in MR imaging is limited by the volume of the B
0
field homogeneity and the receiver coil size (typically, the FOV<48 cm on current commercial MR scanners). The anatomic region of interest in the lower extremity, for example, is about 100 cm and this requires several FOVs, or stations, for a complete study. This requires that the patient be repositioned inside the bore of the magnet, the patient be re-landmarked, scout images be acquired and a preparation scan be performed for each FOV. All of these additional steps take time and, therefore, are expensive. When contrast enhanced MRA is performed, the repositioning also necessitates additional contrast injections.
Recently gadolinium-enhanced bolus chase techniques have been reported which overcome this difficulty, K. Y. Ho, T. Leiner, M. H. de Hann, J. M. A. van Engleshoven, “Gadolinium optimized tracking technique: a new MRA technique for imaging the peripheral vascular tree from aorta to the foot using one bolus of gadolinium (abs).”
Proc.
5
th Meeting of ISMRM
, p203, 1997. As described in U.S. Pat. No. 5,928,148 issued on Jul. 27, 1999 and entitled “Method For Performing Magnetic Resonance Angiography Over A Large Field of View Using Table Stepping,” bolus chase techniques employ a stepping table and an imaging strategy that allows imaging location synchronized to the location of peak contrast enhancement. As the contrast bolus transits through the lower extremity, images encompassing the entire lower extremity are acquired. Mask subtraction is used to suppress background and produce angiograms. Both 2D and 3D fast gradient echo sequences can be used to acquire data. 2D bolus chase MRA offers high in-plane resolution and a fast frame rate. Using 2D MRA, the entire lower extremity can be imaged with a small dose of gadolinium. But 2D acquisition lacks depth resolution, which may be required for depiction of vascular bifurcations, such as in the aorta, iliac and femoral arteries. The depth information can be obtained with additional 2D projections or a 3D acquisition. In prior bolus chase 3D MRA studies, a long acquisition time (2 min) is required and consequently, a large contrast dose (40 mL) is used to maintain the contrast at peak level over the entire scan time. In addition, long acquisition times may result in venous enhancement in the distal station, due to venous return at the calf and ankle, which makes interpretation of the images difficult.
SUMMARY OF THE INVENTION
The present invention is a method for acquiring NMR data from a large region of interest by acquiring NMR data from a series of smaller fields of view which collectively span the large region of interest. The patient is automatically translated, or stepped, to a new position within the bore of the magnet by moving the patient table between the acquisition of each field of view. To enhance the image, a contrast agent is injected in the patient and flows through the successive fields of view. To take maximum advantage of the contrast agent, the order in which k-space sampling is performed to acquire each field of view is changed. For the first field of view a descending sampling order is used and for the final field of view an ascending sampling order is used. An edge-center-edge sampling order is used for intermediate fields of view. To shorten acquisition time at each field of view, partial k-space sampling tailored to each field of view is performed.
A general object of the invention is to obtain maximum image contrast in a bolus tracking MRA scan. Even when using a 3D acquisition which does not enable the bolus of contrast agent to be tracked fast enough as it travels through successive fields of view, contrast enhancement is achieved by judiciously changing the k-space s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for performing magnetic resonance angiography with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for performing magnetic resonance angiography with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for performing magnetic resonance angiography with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2562325

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.