Probe kit for identifying a base in a nucleic acid

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023740

Reexamination Certificate

active

06268152

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to the field of nucleic acid analysis, detection, and sequencing. More specifically, in one embodiment the invention provides improved techniques for synthesizing arrays of nucleic acids, hybridizing nucleic acids, detecting mismatches in a double-stranded nucleic acid composed of a single-stranded probe and a target nucleic acid, and determining the sequence of DNA or RNA or other polymers.
It is important in many fields to determine the sequence of nucleic acids because, for example, nucleic acids encode the enzymes, structural proteins, and other effectors of biological functions. In addition to segments of nucleic acids that encode polypeptides, there are many nucleic acid sequences involved in control and regulation of gene expression.
The human genome project is one example of a project using nucleic acid sequencing techniques. This project is directed toward determining the complete sequence of the genome of the human organism. Although such a sequence would not necessarily correspond to the sequence of any specific individual, it will provide significant information as to the general organization and specific sequences contained within genomic segments from particular individuals. The human genome project will also provide mapping information useful for further detailed studies.
The need for highly rapid, accurate, and inexpensive sequencing technology is nowhere more apparent than in a demanding sequencing project such as the human genome project. To complete the sequencing of a human genome will require the determination of approximately 3×10
9
, or 3 billion, base pairs.
The procedures typically used today for sequencing include the methods described in Sanger et al.,
Proc. Natl. Acad. Sci. USA
(1977) 74:5463-5467, and Maxam et al.,
Methods in Enzymology
(1980) 65:499-559. The Sanger method utilizes enzymatic elongation with chain terminating dideoxy nucleotides. The Maxam and Gilbert method uses chemical reactions exhibiting base-specific cleavage reactions. Both methods require a large number of complex manipulations, such as isolation of homogeneous DNA fragments, elaborate and tedious preparation of samples, preparation of a separating gel, application of samples to the gel, electrophoresing the samples on the gel, working up of the finished gel, and analysis of the results of the procedure.
Alternative techniques have been proposed for sequencing a nucleic acid. PCT patent Publication No. 92/10588, incorporated herein by reference for all purposes, describes one improved technique in which the sequence of a labeled, target nucleic acid is determined by hybridization to an array of nucleic acid probes on a substrate. Each probe is located at a positionally distinguishable location on the substrate. When the labeled target is exposed to the substrate, it binds at locations that contain complementary nucleotide sequences. Through knowledge of the sequence of the probes at the binding locations, one can determine the nucleotide sequence of the target nucleic acid. The technique is particularly efficient when very large arrays of nuleic probes are utilized. Such arrays can be formed according to the techniques described in U.S. Pat. No. 5,143,854 issued to Pirrung et al. See also U.S. application Ser. No. 07/805,727, both incorporated herein by reference for all purposes.
When the nucleic acid probes are of a length shorter than the target, one can employ a reconstruction technique to determine the sequence of the larger target based on affinity data from the shorter probes. See U.S. Pat. No. 5,202,231 to Drmanac et al., and PCT patent Publication No. 89/10977 to Southern. One technique for overcoming this difficulty has been termed sequencing by hybridization or SBH. For example, assume that a 12-mer target DNA 5′-AGCCTAGCTGAA is mixed with an array of all octanucleotide probes. If the target binds only to those probes having an exactly complementary nucleotide sequence, only five of the 65,536 octamer probes (3′-TCGGATCG, CGGATCGA, GGATCGAC, GATCGACT, and ATCGACTT) will hybridize to the target. Alignment of the overlapping sequences from the hybridizing probes reconstructs the complement of the original 12-mer target:
TCGGATCG
 CGGATCGA
  GGATCGAC
   GATCGACT
    ATCGACTT
TCGGATCGACTT
While meeting with much optimism, prior techniques have also met with certain limitations. For example, practitioners have encountered substantial difficulty in analyzing probe arrays hybridized to a target nucleic acid due to the hybridization of partially mismatched sequences, among other difficulties. The present invention provides significant advances in sequencing with such arrays.
SUMMARY OF THE INVENTION
Improved techniques for synthesizing, hybridizing, analyzing, and sequencing nucleic acids (oligonucleotides) are provided by the present invention.
According to one embodiment of the invention, a target oligonucleotide is exposed to a large number of immobilized probes of shorter length. The probes are collectively referred to as an “array.” In the method, one identifies whether a target nucleic acid is complementary to a probe in the array by identifying first a core probe having high affinity to the target, and then evaluating the binding characteristics of all probes with a single base mismatch as compared to the core probe. If the single base mismatch probes exhibit a characteristic binding or affinity pattern, then the core probe is exactly complementary to at least a portion of the target nucleic acid.
The method can be extended to sequence a target nucleic acid larger than any probe in the array by evaluating the binding affinity of probes that can be termed “left” and “right” extensions of the core probe. The correct left and right extensions of the core are those that exhibit the strongest binding affinity and/or a specific hybridization pattern of single base mismatch probes. The binding affinity characteristics of single base mismatch probes follow a characteristic pattern in which probe/target complexes with mismatches on the 3′ or 5′ termini are more stable than probe/target complexes with internal mismatches. The process is then repeated to determine additional left and right extensions of the core probe to provide the sequence of a nucleic acid target.
In some embodiments, such as in diagnostics, a target is expected to have a particular sequence. To determine if the target has the expected sequence, an array of probes is synthesized that includes a complementary probe and all or some subset of all single base mismatch probes. Through analysis of the hybridization pattern of the target to such probes, it can be determined if the target has the expected sequence and, if not, the sequence of the target may optionally be determined.
Kits for analysis of nucleic acid targets are also provided by virtue of the present invention. According to one embodiment, a kit includes an array of nucleic acid probes. The probes may include a perfect complement to a target nucleic acid. The probes also include probes that are single base substitutions of the perfect complement probe. The kit may include one or more of the A, C, T, G, and/or U substitutions of the perfect complement. Such kits will have a variety of uses, including analysis of targets for a particular genetic sequence, such as in analysis for genetic diseases.


REFERENCES:
patent: 3781650 (1973-07-01), Keller
patent: 3824451 (1974-07-01), Freeman et al.
patent: 4587493 (1986-05-01), Sepponen
patent: 4602213 (1986-07-01), Sugiura
patent: 4678995 (1988-01-01), Avison et al.
patent: 4717881 (1988-01-01), Flugan
patent: 4843323 (1989-06-01), Encellaz et al.
patent: 4887034 (1989-12-01), Smith
patent: 5002867 (1991-03-01), Macevicz
patent: 5049821 (1991-09-01), Deunsing et al.
patent: 5143854 (1992-09-01), Pirrung et al.
patent: 5168224 (1992-12-01), Maruizumi et al.
patent: 5175499 (1992-12-01), Davies
patent: 5202231 (1993-04-01), Drmanac et al.
patent: 5254950 (1993-10-01),

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Probe kit for identifying a base in a nucleic acid does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Probe kit for identifying a base in a nucleic acid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Probe kit for identifying a base in a nucleic acid will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2560511

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.