Communication system

Pulse or digital communications – Systems using alternating or pulsating current – Plural channels for transmission of a single pulse train

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S280000, C375S298000, C375S308000, C375S324000, C375S332000, C348S433100, C348S555000, C348S726000, C329S304000, C332S103000

Reexamination Certificate

active

06256357

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a communication system for transmission/reception of a digital signal through modulation of its carrier wave and demodulation of the modulated signal.
2. Description of the Prior Art
Digital communication systems have been used in various fields. Particularly, digital video signal transmission techniques have been improved remarkably.
Among them is a digital TV signal transmission method. So far, such digital TV signal transmission system are in particular use for e.g. transmission between TV stations. They will soon be utilized for terrestrial and/or satellite broadcast service in every country of the world.
The TV broadcast systems including HDTV, PCM music, FAX, and other information service are now demanded to increase desired data in quantity and quality for satisfying millions of sophisticated viewers. In particular, the data has to be increased in a given bandwidth of frequency allocated for TV broadcast service. The data to be transmitted is always abundant and provided as much as handled with up-to-date techniques of the time. It is ideal to modify or change the existing signal transmission system corresponding to an increase in the data amount with time.
However, the TV broadcast service is a public business and cannot go further without considering the interests and benefits of viewers. It is essential to have any new service appreciable with existing TV receivers and displays. More particularly, the compatibility of a system is much desired for providing both old and new services simultaneously or one new service which can be intercepted by either of the existing and advanced receivers.
It is understood that any new digital TV broadcast system to be introduced has to be arranged for data extension in order to respond to future demands and technological advantages and also, for compatible action to allow the existing receivers to receive transmissions.
The expansion capability and compatible performance of prior art digital TV system will be explained.
A digital satellite TV system is known in which NTSC TV signals compressed to an about 6 Mbps are multiplexed by time division modulation of 4 PSK and transmitted on 4 to 20 channels while HDTV signals are carried on a single channel. Another digital HDTV system is provided in which HDTV video data compressed to as small as 15 Mbps are transmitted on a 16 or 32 QAM signal through ground stations.
Such a known satellite system permits HDTV signals to be carried on one channel by a conventional manner, thus occupying a band of frequencies equivalent to same channels of NTSC signals. This causes the corresponding NTSC channels to be unavailable during transmission of the HDTV signal. Also, the compatibility between NTSC and HDTV receivers or displays is hardly concerned and data expansion capability needed for matching a future advanced mode is utterly disregarded.
Such a common terrestrial HDTV system offers an HDTV service on conventional 16 or 32 QAM signals without any modification. In any analogue TV broadcast service, there are developed a lot of signal attenuating or shadow regions within its service area due to structural obstacles, geographical inconveniences, or signal interference from a neighbor station. When the TV signal is an analogue form, it can be intercepted more or less at such signal attenuating regions although its reproduced picture is low in quality. If TV signal is a digital form, it can rarely be reproduced at an acceptable level within the regions. This disadvantage is critically hostile to the development of any digital TV system.
This problem is caused due to the fact that the conventional modulation systems such QAM arrange the signal points at constant intervals. There have been no such systems that can change or modulate the arrangement of signal points.
SUMMARY OF THE INVENTION
It is an object of the present invention, for solving the foregoing disadvantages, to provide a communication system arranged for compatible use for both the existing NTSC and introducing HDTV broadcast services, particularly via satellite and also, for minimizing signal attenuating or shadow regions of its service area on the grounds.
A communication system according to the present invention intentionally varies signal points, which used to be disposed at uniform intervals, to perform the signal transmission/reception. For example, if applied to a QAM signal, the communication system comprises two major sections: a transmitter having a signal input circuit, a modulator circuit for producing m numbers of signal points, in a signal vector field through modulation of a plurality of out-of-phase carrier waves using an input signal supplied from the input circuit, and a transmitter circuit for transmitting a resultant modulated signal; and a receiver having an input circuit for receiving the modulated signal, a demodulator circuit for demodulating one-bit signal points of a QAM carrier wave, and an output circuit.
In operation, the input signal containing a first data stream of n values and a second data stream is fed to the modulator circuit of the transmitter where a modified m-bit QAM carrier wave is produced representing m signal points in a vector field. The m signal points are divided into n signal point groups to which the n values of the first data stream are assigned respectively. Also, data of the second data stream are assigned to m
signal points or sub groups of each signal point group. Then, a resultant transmission signal is transmitted from the transmitter circuit. Similarly, a third data stream can be propagated.
At the p-bit demodulator circuit, p>m, of the receiver, the first data stream of the transmission signal is first demodulated through dividing p signal points in a signal space diagram into n signal point groups. Then, the second data stream is demodulated through assigning p
values to p
signal points of each corresponding signal point group for reconstruction of both the first and second data streams. If the receiver is at P=n, the n signal point groups are reclaimed and assigned the n values for demodulation and reconstruction of the first data stream.
Upon receiving the same transmission signal from the transmitter, a receiver equipped with a large sized antenna and capable of large-data modulation can reproduce both the first and second data streams. A receiver equipped with a small sized antenna and capable of small-data modulation can reproduce the first data stream only. Accordingly, the compatibility of the signal transmission system will be ensured. When the first data stream is an NTSC TV signal or low frequency band component of an HDTV signal and the second data stream is a high frequency band component of the HDTV signal, the small-data modulation receiver can reconstruct the NTSC TV signal and the large-data modulation receiver can reconstruct the HDTV signal. As understood, a digital NTSC/HDTV simultaneously broadcast service will be feasible using the compatibility of the signal transmission system of the present invention.
More specifically, the communication system of the present invention comprises: a transmitter having a signal input circuit, a modulator circuit for producing m signal points, in a signal vector field through modulation of a plurality of out-of-phase carrier waves using an input signal supplied from the input, and a transmitter circuit for transmitting a resultant modulated signal, in which the main procedure includes receiving an input signal containing a first data stream of n values and a second data stream, dividing the m signal points of the signal into n signal point groups, assigning the n values of the first data stream to the n signal point groups respectively, assigning data of the second data stream to the signal points of each signal point group respectively, and transmitting the resultant modulated signal; and a receiver having an input circuit for receiving the modulated signal, a demodulator circuit for demodulating p signal points of a QAM c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Communication system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Communication system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Communication system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2559981

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.