Bioresorbable ceramic composites

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S422000, C424S423000, C424S603000

Reexamination Certificate

active

06331312

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to composite materials containing a poorly-crystalline apatitic calcium phosphate useful as human or animal implantable bioceramics and for other purposes. The invention further relates to moldable, biocompatible composites that can be used for reinforcement in bone fractures, dental implants, bone implants and prostheses and the like.
BACKGROUND OF THE INVENTION
Calcium phosphates are the principal constituent of hard tissues (bone, cartilage, tooth enamel and dentine). Naturally-occurring bone mineral is made of nanometer-sized, poorly-crystalline calcium phosphate with an apatitic structure. The poorly crystalline apatitic calcium phosphate of bone is distinguished from the more crystalline hydroxyapatites and non-stoichiometric hydroxyapatites by its distinctive x-ray diffraction pattern as shown in FIG.
1
. Unlike the ideal stoichiometric crystalline hydroxyapatite, Ca
10
(PO
4
)
6
(OH)
2
, with atomic Ca/P ratio of 1.67, the composition of bone mineral is significantly different and may be represented by the following formulae,
Ca
8.3
(PO
4
)
4.3
(HPO
4
, CO
3
)
1.7
(OH, CO
3
)
0.3
.
Bone mineral non-stoichiometry is primarily due to the presence of divalent ions, such as CO
3
2−
and HPO
4
2−
, which are substituted for the trivalent PO
4
3−
ions. Substitution by HPO
4
2−
and CO
3
2−
ions produces a change of the Ca/P ratio, resulting in Ca/P ratio which may vary between 1.50 to 1.70, depending on the age and bony site. Generally, the Ca/P ratio increases during aging of bone, suggesting that the amount of carbonate species typically increases for older bones. It is the Ca/P ratio in conjunction with nanocrystalline size and the poorly-crystalline nature that yields specific solubility property of the bone minerals. And because bone tissues undergo constant tissue repair regulated by the mineral-resorbing cells (osteoclasts) and mineral-producing cells (osteoblasts), solubility behavior of minerals is important in maintaining a delicate metabolic balance between these cell activities.
Synthetic bone graft material made to closely resemble natural bone minerals can be a useful replacement for natural bone. Acceptable synthetic bone can avoid the problem of availability and harvesting of autologous bone (patient's own bone) and the risks and complications associated with allograft bone (bone from a cadaver), such as risks of viral transmission. An ideal synthetic bone graft should possess a minimum of the following four properties: (1) it should be chemically biocompatible; (2) it should provide some degree of structural integrity in order to keep the graft in place and intact until the patient's own bone heals around it; (3) it should be resorbable so that the patient's own bone ultimately replaces the graft; and, (4) because it may be necessary to incorporate cells and/or biomolecules into the synthetic bone material, it is desirable that the process used to form the material employ low temperatures and chemically mild conditions. Similar criteria are also important for other hard tissue grafts (e.g. cartilage).
These criteria may be met by a material in which parameters, such as Ca/P ratios, crystal size, crystallinity, porosity, density, thermal stability and material purity are controlled. While there have been considerable efforts to synthesize a ceramic material for the use as implants, synthetic hydroxyapatites have most often been used because their chemical formulae are very similar to the naturally occurring mineral in bone. LeGeros R.Z., in
Calcium Phosphates in Oral Biology and Medicine
, Karger Pub. Co., New York, 1991 teaches highly crystalline forms of hydroxyapatite produced by solution precipitation followed by sintering at high temperatures (800-1200° C.). High temperature treatment yields highly stoichiometric hydroxyapatite with crystal sizes on the order of several microns with a Ca/P of 1.67. Such highly crystalline hydroxyapatite is essentially non-resorbable in vivo. It is not replaced by living bone tissue and remains intact in the patient for an undesirably extended period of time.
A number of other approaches to the production of bone substitute material have employed hydroxyapatite produced by a solid-state acid-base reaction of primarily crystalline calcium phosphate reactants. These hydroxy apatite bone substitute materials are sometimes poorly-reacted, inhomogeneous, and have significant crystalline hydroxyapatite content.
Constantz in U.S. Pat. No. 4,880,610 reports on the preparation of calcium phosphate minerals by the reaction of a highly concentrated phosphoric acid with a calcium source in the presence of a base and hydroxyapatite crystals. The resultant product is a polycrystalline material containing a crystalline form of hydroxyapatite minerals. Likewise, U.S. Pat. No. 5,053,212 to Constantz et al. discloses the use of a powdered acid source to improve the workability and mixability of the acid/base mixture; however, a mixed-phase calcium phosphate material similar to that of U.S. Pat. 4,880,610 is reported. Recently, Constantz et al. reported in Science (Vol. 267, pp. 1796-9 (Mar. 24, 1995)) the formation of a carbonated apatite from the reaction of monocalcium phosphate monohydrate, beta-tricalcium phosphate, alpha-tricalcium phosphate, and calcium carbonate in a sodium phosphate solution, to provide a calcium phosphate material which is still substantially more crystalline in character than naturally occurring bone minerals.
Similarly, Brown et al. in U.S. Reissue No. 33,221 report on the reaction of crystalline tetracalcium phosphate (Ca/P of 2.0) with acidic calcium phosphates. Liu et al. in U.S. Pat. No. 5,149,368 disclose the reaction of crystalline calcium phosphate salts with an acidic citrate.
A number of calcium phosphate bone fillers and cements have been described as “resorbable.” Generally, these are compounds comprising or derived from tricalcium phosphate, tetracalcium phosphate or hydroxyapatite. At best these materials may be considered only weakly resorbable. Of these, the tricalcium phosphate compounds have been demonstrated to be the most resorbable and after many years of study they are still not widely used in clinical settings. The tricalcium phosphates are known to have lengthy and somewhat unpredictable resorption profiles, generally requiring in excess of one year for resorption. Furthermore, unless steps are taken to produce extremely porous or channeled samples, the tricalcium phosphates are not replaced by bone. Recently it has been concluded that the “biodegradation of TCP, which is higher than that of Hap [hydroxyapatite] is not sufficient” (Berger et al., Biomaterials, 16:1241 (1995)).
Tetracalcium phosphate and hydroxyapatite derived compounds are also only weakly resorbable. Tetracalcium phosphate fillers generally exhibit partial resorption over long periods of time such as 80% resorption after 30 months (Horioglu et al., Soc. for Biomaterials, Mar. 18-22, pg 198 (1995)). Approximately 30% of microcrystalline HA implanted into the frontal sinus remained after 18 months in cats.
All of these references disclose a chemical reaction resulting in crystalline form of hydroxyapatite solids that has been obtained by reacting crystalline solids of calcium phosphate. There has been little reported on the use of amorphous calcium phosphates (Ca/P of approximately 1.5) as one of the reactants because the amorphous calcium phosphates are the least understood solids among the calcium phosphates and amorphous calcium phosphate has traditionally been considered to be a relatively inert and non-reactive solid.
Amorphous calcium phosphate material has been used as a direct precursor to the formation of a highly crystalline hydroxyapatite compounds under generally high temperature treatments. Such a highly crystalline material is inappropriate for synthetic bone because it is highly insoluble under physiological conditions. Chow et al. in U.S. Pat. No. 5,525,148 report the testing of ACP precursors in a number of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Bioresorbable ceramic composites does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Bioresorbable ceramic composites, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bioresorbable ceramic composites will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2557062

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.