Optical communication connector

Optical waveguides – With optical coupler – Input/output coupler

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C385S074000, C385S038000, C385S035000

Reexamination Certificate

active

06259839

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an optical communication connector suitable for use in an optical communication device for bidirectionally transmitting a signal between a plurality of devices such as personal computers, AV devices, etc. by means of optical fibers as in the case where, for example, an in-house network is constructed.
2. Description of the Related Art
As optical fibers employed in an optical communication device, there are known one (hereinafter called “silica fiber”) having a core whose material is Sio
2
and one (hereinafter called “plastic fiber”) having a core whose material is plastic. The former silica fiber has the advantage of less transfer losses as compared with the plastic fiber. On the other hand, since the core is small in diameter, a high-accuracy optical-axis alignment is required when silica fibers are optically-coupled to each other, whereby an optical connector becomes so expensive. In contrast to this, the latter plastic fiber has an advantage in that as compared with the silica fiber, an inexpensive optical connector (e.g., plastic molded product) can be used because it is large in core diameter but on the other hand, it has a drawback in that transfer losses are greatly produced and a transfer distance is about several tens of meters at the very outside.
Owing to such reasons, a communication system in which a transfer distance is relatively short as in the in-house network and many connectors are required, uses plastic fibers heavily. However, when light is transmitted over a distance exceeding a transferable distance of one plastic fiber, the light emitted from an end surface of one plastic fiber is photoelectrically transferred into an electric signal by a light-receiving device. Further, the resultant electric signal is amplified and converted to a light signal again by a light-emitting device, after which it is launched into an end surface of the other plastic fiber, whereby relays are made between a plurality of plastic fibers.
However, such a conventional optical communication device has a problem in that when the light signal is transmitted over the distance exceeding the transferable distance of one plastic fiber, the light signal is photoelectrically converted into the electric signal and the resultant electric signal is amplified and converted to the light signal again, so that the light-receiving device, amplifier and light-emitting device are required every transferable distances of respective one plastic fibers, thus increasing the entire communication system in cost and complexity.
SUMMARY OF THE INVENTION
The present invention adopts a communication system in which a transmission range is divided every areas not exceeding a transferable distance of each plastic fiber, a signal is bidirectionally transmitted over the respective areas through the plastic fibers and relays are made between the plastic fibers in the respective areas via silica fibers and provides an optical communication connector suitable for use in such a communication system and provided between the plastic fibers and the silica fibers, which is constructed such that signal light delivered from the plastic fiber is launched into the silica fiber through a condenser lens and the signal light from the silica fiber is directly launched into the plastic fiber. According to such a construction, the bidirectional optical communications with a distant place can be performed by the plastic fibers without using signal amplifying means. Further, since the optical communication connector, which optically couples between the plastic fibers and the silica fibers, can be simplified in structure, the cost of the entire communication system can be reduced and the system can be simplified.
The optical communication connector of the present invention is constructed in such a manner that, within a common casing, light emitted and diffused from an end surface of a core of a first plastic fiber is focused on a condenser lens to thereby launch it into an end surface of a core of a first silica fiber, and end surfaces of respective cores of a second silica fiber and a second plastic fiber are kept in intimate contact with each other to thereby directly launch signal light from the second silica fiber to the second plastic fiber.


REFERENCES:
patent: 4082421 (1978-04-01), Auracher et al.
patent: 5668906 (1997-09-01), Yamamura et al.
patent: 57-094708 (1982-12-01), None
patent: 3-107112 (1991-05-01), None
patent: 5-215938 (1993-08-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Optical communication connector does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Optical communication connector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optical communication connector will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2553669

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.