High Cr, low saturation magnetization intermediate magnetic...

Stock material or miscellaneous articles – Web or sheet containing structurally defined element or... – Physical dimension specified

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S336000, C428S690000, C428S690000, C428S900000

Reexamination Certificate

active

06221481

ABSTRACT:

This application contains subject matter related to subject matter disclosed in copending application Ser. No. 09/188,681, filed on Nov. 10, 1998, now pending and related to subject matter disclosed in copending application Ser. No. 09/188,682, filed on Nov. 10, 1998, now pending the entire disclosures of which are incorporated herein by reference.
1. Technical Field
The present invention relates to magnetic recording media, such as thin film magnetic recording disks, and to a method of manufacturing the media. The invention has particular applicability to high areal density magnetic recording media exhibiting low noise, high remanent coercivity and high coercivity squareness.
2. Background Art
The requirements for increasingly high areal recording density impose increasingly greater demands on thin film magnetic recording media in terms of remanent coercivity (Hr), magnetic remanance (Mr), coercivity squareness (S*), medium noise, i.e., signal-to-noise ratio (SNR), and narrow track recording performance. It is extremely difficult to produce a magnetic recording medium satisfying such demanding requirements.
The linear recording density can be increased by increasing the Hr of the magnetic recording medium and, at the same time, decreasing the medium noise, as by maintaining very fine magnetically non-coupled grains. Medium noise is a dominant factor restricting increased recording density of high density magnetic hard disk drives. Medium noise in thin films is attributed primarily to inhomogeneous grain size and intergranular exchange coupling. Accordingly, in order to increase linear density, medium noise must be minimized by suitable microstructure control.
A conventional longitudinal recording disk medium is depicted in FIG.
1
and comprises a substrate
10
, typically an (Al)-alloy, such as an Al-magnesium (AlMg) alloy plated with a layer of amorphous nickel-phosphorus (NiP). Alternative substrates include glass, ceramic and glass-ceramic materials, as well as graphite. There are typically sequentially sputter deposited on each side of substrate
10
an optional adhesion enhancement layer
11
,
11
′, a seedlayer
12
,
12
′, such as NiP, an underlayer
13
,
13
′, such as chromium (Cr) or a Cr alloy, a magnetic layer
14
,
14
′, such as a cobalt (Co)-based alloy, and a protective overcoat
15
,
15
′, such as a carbon-containing overcoat. Typically, although not shown for illustrative convenience, a lubricant topcoat is applied on the protective overcoat
15
,
15
′.
It is recognized that the magnetic properties, such as Hr, Mr, S* and SNR, which are critical to the performance of a magnetic alloy film, depend primarily upon the microstructure of the magnetic layer which, in turn, is influenced by the underlying layers, such as the underlayer. It is also recognized that underlayers having a fine grain structure are highly desirable, particularly for growing fine grains of hexagonal close packed (HCP) Co alloys deposited thereon.
It has been reported that nickel-aluminum (NiAl) films exhibit a grain size which is smaller than similarly deposited Cr films, which are the underlayer of choice in conventional magnetic recording media. Li-Lien Lee et al., “NiAl Underlayers For CoCrTa Magnetic Thin Films”, IEEE Transactions on Magnetics, Vol. 30, No. 6, pp. 3951-3953, 1994. Accordingly, NiAl thin films are potential candidates as underlayers for magnetic recording media for high density longitudinal magnetic recording. However, it was found that the coercivity of a magnetic recording medium comprising a NiAl underlayer is too low for high density recording, e.g. about 2,000 Oersteds (Oe).
Lee et al. subsequently reported that the coercivity of a magnetic recording medium comprising a NiAl underlayer can be significantly enhanced by depositing a plurality of underlayers containing alternative NiAl and Cr layers rather than a single NiAl underlayer. Li-Lien Lee et al., “Effects of Cr Intermediate Layers on CoCrPt Thin Film Media on NiAl Underlayers,” Vol. 31, No. 6, Nov. 1995, pp. 2728-2730. It was found, however, that such a magnetic recording medium is characterized by an underlayer structure exhibiting a (110)-dominant crystallographic orientation which does not induce the preferred (1120)-dominant crystallographic orientation in the subsequently deposited Co alloy magnetic layer and is believed to contribute to increased media noise. Li-Lien Lee et al. were able to obtain an underlayer exhibiting a (200)-dominant crystallographic orientation by initially depositing a Cr sub-underlayer directly on the non-magnetic substrate at an undesirably high temperature of about 260° C. using radio frequency (RF) sputtering. However, deposition of a Cr sub-underlayer at such an elevated temperature undesirably results in large grains, which is inconsistent with the reason for employing NiAl as an underlayer. On the other hand, it is very difficult to obtain a Cr (200)-dominant crystallographic orientation, even at elevated temperature such as 260° C., on glass, ceramic and glass ceramic substrates using direct current (DC) magnetron sputtering, which is widely employed in the magnetic recording media industry.
Li-Lien Lee et al. recognized the undesirability of resorting to high deposition temperatures to obtain a (200)-dominant crystallographic orientation in the underlayer structure. It was subsequently reported that an underlayer structure exhibiting a (200)-dominant crystallographic orientation was obtained by depositing a magnesium oxide (MgO) seedlayer using radio frequency (RF) sputtering. Li-Lien Lee et al., “Seed layer induced (
002
) crystallographic texture in NiAl underlayers,” J. Appl. Phys. 79 (8), Apr. 15, 1996, pp. 4902-4904; and David E. Laughlin et al., “The Control and Characterization of the Crystallographic Texture of the Longitudinal Thin Film Recording Media,” IEEE Transactions on Magnetics, Vol. 32, No. 5, September 1996, pp. 3632-3637. Such a magnetic recording medium, however is not commercially viable from an economic standpoint, because sputtering systems in place throughout the industry making magnetic recording media are based upon direct current (DC) sputtering. Accordingly, RF sputtering an MgO seedlayer is not economically viable. The use of an NiAl underlayer is also disclosed by C. A. Ross et al., “The Role Of An NiAl Underlayers In Longitudinal Thin Film Media” and J. Appl. Phys. 81(a), P.4369, 1996.
Conventional practices in manufacturing magnetic recording media comprise Direct Current (DC) magnetron sputtering and high temperatures in order to obtain Cr segregation in Co-alloy grain boundaries to achieve high Hr and high SNR. Conventional practices, therefore, employ a high substrate heating temperature, e.g. above about 200° C., e.g. about 230° C. to about 260° C., in order to achieve a desirably high Hr. However, such high substrate heating temperatures result in a reduced S* and, hence, increased medium noise. In order to increase information storage capacity, recording media with higher Hr and lower medium noise are manifestly required. Higher Hr narrows the pulse width, thereby enabling reduction of the bit length for higher recording density, while lower media noise leads to higher SNR.
In order to increase Hr, magnetic alloys containing platinum (Pt), such as Co—Cr—Pt-tantalum (Ta) alloys have been employed. Although Pt enhances film Hr, it was found that Pt also increases media noise. Accordingly, it has become increasingly difficult to achieve high areal recording density while simultaneously achieving high SNR and high Hr.
As media noise predominately stems from exchange and magnetostatic interactions among magnetic grains, SNR can be improved by minimizing such interactions. For example, such interactions can be suppressed by separating or segregating the magnetic grains either physically or chemically. Prior efforts in this area, however, have dealt with relatively low Hr media, e.g. less than about 2,000 Oe. Little effort, to date, has been devoted to increasing Hr and simultaneously reducing media

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High Cr, low saturation magnetization intermediate magnetic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High Cr, low saturation magnetization intermediate magnetic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High Cr, low saturation magnetization intermediate magnetic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2551942

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.