Sole for a cross-country, trail or telemark ski-boot

Boots – shoes – and leggings – Boots and shoes – Occupational or athletic shoe

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C036S117300, C036S03000A

Reexamination Certificate

active

06202326

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a sole for a cross-country, touring or Telemark ski shoe the front section of which comprises, for the purpose of binding a shoe of this type onto a cross-country, touring or Telemark binding between ball area and rear end, in particular at its rear end, means for engaging a clamping element so that the front sole section can be clamped between its front definition and the aforementioned engaging means, and into which is embedded or mounted a flexurally elastic reinforcing element.
BACKGROUND OF THE INVENTION
A sole structure of this type has been suggested in the previous PCT/IB96/00085 of the applicants. This pre-application deals actually with binding a ski shoe to an associated ski binding by a clamping element which engages at the front sole of the shoe, in particular between ball area and its rear end. The clamping element preferably engages the bottom side of the front sole of the shoe. In a first form of embodiment, the clamping element is arranged around a clamping cord which is taken around at least a portion of the front sole. A second alternative form of embodiment is characterised in that the clamping element is designed as an elastic band or springleaf the rear end of which can be hooked into the bottom side of the front sole of the shoe. These aforementioned designs permit unhindered lifting of the shoe heel during cross-country or touring skiing. Furthermore, this design ensures defined reshaping of the shoe or the sole of the shoe, so that the guidance of skis and a load transfer onto the ski do not suffer and a maximum portion of energy offered by the skier can be converted into speed and guidance of skis.
SUMMARY OF THE INVENTION
Based on these initial thoughts, it is an object of the present invention to design the sole structure in such a manner that the aforementioned effects can be promoted further and are in particular ensured. To be particularly ensured is the defined downward curvature of the front sole sections or the front sole when the heel of the shoe is lifted during cross-country, touring or Telemark skiing. In this context, it may be mentioned that embedding or mounting a flexurally elastic reinforcing element offers the advantage that the sole can then be made of soft elastic plastic or rubber. Use of such a material allows a reduction of the overall weight of the sole and accordingly of the shoe itself.
The aforementioned aims are achieved according to the invention by a sole for a ski having a front section, a rearwardly open back taper and a flexurally elastic reinforcing element. The front section binds the ski shoe onto a ski binding. The rearwardly open back taper engages with a clamping element for clamping the front section between a front definition of the sole and the back taper. The reinforcing element is embedded into the front section and forked into two fork shanks in proximity of the back taper so that both fork shanks extend into an upper definition and a lower definition of the back taper. Further, the reinforcing element extends between the front definition of the sole and the back taper in such a manner that a tensional load vector, which results from clamping the front section, lies above a zero level of the reinforcing element, and which extends approximately parallel thereto.
Accordingly, the inventive sole design distinguishes itself in that the reinforcing element extends in the front section of the sole between its front definition and the engaging means for the clamping element in such a manner that the resulting tensional load vector lies above the zero line of the reinforcing element, which extends approximately parallel thereto. The tensional force vector extends, on the one hand, on the connecting line between the support of the front definition of the sole on the binding or on the binding housing and, on the other hand, on the engagement of the clamping element in the rear area of the front sole section. This connecting line should be positioned above the zero or gravity force line of the reinforcing element, which extends in the longitudinal direction of the sole. It has to be pointed out that the aforementioned zero or gravity force line is not necessarily in a straight line. It can also be arched if the reinforcing element is correspondingly bent or curved in the longitudinal direction of the sole. In this case, the tensional load vector defines a chord of this arched line. As regards this special form of embodiment, reference is made to claim
2
. In this form of embodiment, the reinforcing element is a surface component of corrosion-resistant material, in particular aluminium, precious steel, plastic, titanium alloy or the like. The component has a specified downward curvature and is mounted, whilst maintaining said curvature, into the front section of the sole in such a manner that the tensional load vector defines a chord of the zero line of the downwardly curved reinforcing element. The given curvature of the reinforcing element does not have to be particularly marked. It only serves to ensure that the front section of the sole is pretensioned downwards rather than upwards when clamping the sole or the shoe into the binding. This guarantees that the front sole section behaves anatomically when the heel is lifted.
The reinforcing element can alternatively be designed as a wire insert.
It is also feasible to design the reinforcing element with at least one hinge area in the direction parallel to the sole and approximately vertically to its longitudinal direction.
The reinforcing element is preferably designed as a plate- or foil-like insert of metal or plastic. In this case, the hinge area is characterised by a material weakening and/or beading.
The reinforcing element is preferably directly adjacent the engaging means for the clamping element on the sole so as to ensure firm clamping in the event of particularly soft sole material.
In a preferred form of embodiment, the sole-integrated engaging means for the clamping element include a rearwardly open back taper which is formed on the bottom of the front sole section and into which is insertible a clamping cord or a clamping hook which is pretensionable when closing the binding in the forward direction.
For the purpose of strengthening the aforementioned connecting point for the clamping element, the reinforcing element is preferably forked in the area of the back taper, i.e. in such a manner that both fork shanks extend into the upper and lower definition of the back taper.
A particularly advantageous form of embodiment is further characterised in that the thickness of the reinforcing element decreases from rear to front. This achieves, on the one hand, a particularly high strength in the engaging and linking area and, on the other hand, high flexibility of the front sole section.


REFERENCES:
patent: 3613270 (1971-10-01), Eie
patent: 4186500 (1980-02-01), Salzman
patent: 4907353 (1990-03-01), Wittmann et al.
patent: 0 243 847 (1987-11-01), None
patent: 2 457 081 (1980-12-01), None
patent: 2 595 951 (1987-09-01), None
patent: WO 96/23558 (1996-08-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sole for a cross-country, trail or telemark ski-boot does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sole for a cross-country, trail or telemark ski-boot, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sole for a cross-country, trail or telemark ski-boot will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2550315

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.