Multilayer quadruple gate field effect transistor structure...

Active solid-state devices (e.g. – transistors – solid-state diode – Housing or package – For plural devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S107000

Reexamination Certificate

active

06294829

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to integrated circuit devices. More particularly, the present invention relates to a multilayer semiconductor-on-insulator integrated circuit structure.
BACKGROUND OF THE INVENTION
Semiconductor devices, such as, complementary metal oxide semiconductor (CMOS) integrated circuits, generally include field effect transistors (FETs) which are disposed in a single plane of a semiconductor substrate. Basically, semiconductor devices can be bulk semiconductor-type devices or semiconductor-on-insulator-type devices, such as, silicon-on-insulator (SOI) devices. Bulk semiconductor devices can include field effect transistors (FETs) which are manufactured as lateral or vertical devices disposed on a silicon substrate.
In bulk semiconductor-type devices which have lateral FETs, a top surface of the substrate is doped to form source and drain regions, and a gate conductor is provided on the top surface of the semiconductor substrate between the source and drain regions. In operation, an electric field is generated in a channel region between the source and drain regions (e.g., below the gate conductor) by an electric signal provided to the gate conductor. The electric field causes charge carriers to be conducted across the channel region along essentially the top surface of the semiconductor substrate. The electric field penetrates the channel region from one direction because the gate conductor is only located over the top surface of the channel region. The current density associated with the FET is somewhat limited because the current only travels near the top surface of the substrate (e.g., the current is one dimensional).
In bulk semiconductor-type devices which have vertical FETs, the semiconductor substrate, such as, a silicon substrate, is etched to form trenches or steps. The gate of the vertical transistor is disposed on a side wall of the trench or step. A channel region is located adjacent to the side wall. Due to its small lateral size, the vertical transistor generally allows more devices to be contained on a single semiconductor substrate. Similar to conventional lateral FETs discussed above, the gate conductors are disposed on only one side of the channel region, and the current density associated with the vertical FET is somewhat limited.
Bulk semiconductor-type devices can be subject to some disadvantageous properties, such as, less than ideal subthreshold voltage slope during operation, high junction capacitance, and ineffective isolation. Additionally, bulk semiconductor-type devices often require epilayers, P-wells, or N-wells which require additional fabrication steps.
SOI (e.g., silicon-on-insulator) devices have significant advantages over bulk semiconductor-type devices, including near ideal subthreshold voltage slope, low junction capacitance, and effective isolation between devices. SOI-type devices generally completely surround a silicon or other semiconductor substrate with an insulator. Devices, such as, FETs or other transistors, are disposed on the silicon by doping source and drain regions and by providing gate conductors between the source and drain regions. SOI devices provide significant advantages, including reduced chip size or increased chip density, because minimal device separation is needed due to the surrounding insulating layers. Additionally, SOI devices can operate at increased speeds due to reductions in parasitic capacitance.
Similar to conventional bulk semiconductor-type devices discussed above, conventional SOI devices have somewhat limited current density because the gate conductor is provided only on one side of the channel region. Additionally, conventional SOI devices generally have a floating substrate (the substrate is often totally isolated by insulating layers). Accordingly, SOI devices are subject to floating substrate effects, including current and voltage kinks, thermal degradation, and large threshold voltage variations.
SOI devices also can have some limited packing densities because they are limited in vertical integration. Generally, SOI devices are only comprised of a single SOI layer.
Thus, there is a need for an SOI device which has improved density and improved vertical integration. Further, there is a need for an SOI device which includes an FET which has improved density, increased operating speed, and higher current density. Further still, there is a need for a multilayer SOI device.
SUMMARY OF THE INVENTION
The present invention relates to an integrated circuit that includes a first layer and a second layer. The first layer includes a first semiconductor substrate containing a first channel region of at least one first field effect transistor. The first semiconductor substrate is disposed between a first insulating layer and a second insulating layer, whereby the second insulating layer is coupled to a support substrate. The second layer includes a second semiconductor substrate containing a second channel region of at least one second field effect transistor. The second semiconductor substrate is disposed between a third insulating layer and a fourth insulating layer. The fourth insulating layer is in contact with the first insulating layer, whereby the first semiconductor substrate is stacked below the second semiconductor substrate.
The present invention further relates to a multilayer structure for containing a plurality of transistors. The multilayer silicon-on-insulator structure includes a first layer and a second layer. The first layer includes a first semiconductor substrate containing a first channel region of at least one first field effect transistor. The first semiconductor substrate is at least partially surrounded by insulating material. The second layer includes a second semiconductor substrate that is at least partially surrounding by insulating material. The first semiconductor substrate is stacked below the second semiconductor substrate, and the first layer is bonded to the second layer.
The present invention still further relates to a method of making a multilayer silicon-on-insulator structure for containing a plurality of transistors. The method includes providing a first layer, including a first semiconductor substrate and a first conductive layer; providing a second layer, including a second semiconductor substrate and a second conductive layer; and attaching the first layer to the second layer. The first conductive layer is adjacent to the first semiconductor substrate, whereby the first semiconductor substrate is at least partially surrounded by insulating material. The first conductive layer is electrically coupled to a first via. The second conductive layer is adjacent to the second semiconductor substrate, whereby the second semiconductor substrate is at least partially surrounded by insulating material. The second conductive layer is electrically coupled to a second via. The first layer is attached to the second layer such that the first via is electrically coupled to the second via.
In one aspect of the present invention, a SOI FET device has near ideal subthreshold voltage slope, low junction capacitance, an effective isolation as well as increased current density. The FET can have a non-floating (e.g., a biased) substrate to reduce floating substrate effects, such as, current and voltage kinks, thermal degradation, and large voltage variations. The substrate is rectangular or bar-shaped.
In another aspect of the present invention, a quadruple gate FET structure provides wider channel conduction for higher drive current. The quadruple gate construction provides three dimensional current within the channel region of the substrate on an SOI-type or bulk-type device. The current is driven in a rectangular cross section and is not limited to the top surface of the substrate. The surrounded gate structure improves current drive characteristics of the FET, provides a more uniform electric field in the channel region, and reduces hot carrier injection reliability limitations.
In accordance with still another aspect of the present invention

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multilayer quadruple gate field effect transistor structure... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multilayer quadruple gate field effect transistor structure..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multilayer quadruple gate field effect transistor structure... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2549658

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.