Rotary atomizing head type coating device

Fluid sprinkling – spraying – and diffusing – Electrostatic type – With impeller

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C239S706000, C239S701000, C239S705000, C118S620000

Reexamination Certificate

active

06230994

ABSTRACT:

TECHNICAL FIELD
This invention relates to a rotary atomizing head type coating machine which is adapted to atomize a paint into finely divided particles by high speed rotation of a rotary atomizing head, and more particularly to a rotary atomizing head type coating machine which is suitable for use as a direct charging type electrostatic coating machine which is adapted to apply a high voltage directly to paint.
BACKGROUND ART
Generally, rotary atomizing head type coating machines have been and are in wide use for coating vehicle bodies or similar coating objects. A rotary atomizing head type coating machine is largely constituted by a cover of a tubular shape, an air motor which is housed in the tubular cover, a hollow rotational shaft which is passed axially through and rotated by the air motor, a feed tube which is extended axially and internally of the hollow rotational shaft, and a rotary atomizing head which is mounted on the rotational shaft and put in high speed rotation to spray a paint which is supplied from the feed tube.
As for rotary atomizing head type coating machines, there have been known in the art the so-called direct charging type electrostatic coating machines which are arranged, for example, to apply a high voltage to the rotational shaft for electrically charging paint which flows through the feed tube (e.g., as disclosed in Japanese Laid-Open Patent Publication No. H2-237667, H6-269701 and H8-150352).
In the case of a rotary atomizing head type coating machine of this sort, the rotary atomizing head is formed of an insulating synthetic resin material, and a semi-conductive film layer is formed at and on paint releasing edges of the rotary atomizing head. A high voltage is applied to the semi-conductive film layer through a semi-conductive film, an electrode or the like which is provided in the proximity of the rotary atomizing head. As a result, corona discharge occurs at the fore end of the semi-conductive film layer of the rotary atomizing head, and aeroions are generated by aeroionization under the influence of the corona discharge. Therefore, the paint particles which are sprayed from the paint releasing edges of the rotary atomizing head are adsorbed on aeroions, which are generated in a corona discharge zone, to form charged paint particles. Consequently, charged paint particles which are sprayed from the rotary atomizing head are urged to fly along an electrostatic field toward and deposit on a coating object which is held at the earth potential.
Further, in the case of the prior art as described above, having the rotary atomizing head is formed of an insulating synthetic resin material, it becomes possible to lower the static capacity of the rotary atomizing head itself to a significant degree as compared with rotary atomizing heads which are formed of a metallic material. Therefore, even if a coating object comes to an abnormally close proximity to the rotary atomizing head, there is no possibility of accumulated charges on the rotary atomizing head instantly dischanging toward the coating object.
The prior art rotary atomizing head type coating machines according to the above-mentioned prior art employ a rotary atomizing head which is formed of an insulating synthetic resin material. Accordingly, when a coating object to be coated comes to an abnormally close proximity to the rotary atomizing head, there is little possibility that spark discharges generally referred to as “streamers” or “sparks” are induced solely by accumulated charges on the part of the rotary atomizing head. However, in the case of the above-mentioned prior art, the coating machine has metallic parts such as air motor, which have a floating capacitance and therefore can store electric charges therein. If electric charges are stored by the floating capacitance of the air motor or other metallic parts, spark discharges take place as a result of instant discharge of the stored electric charges to the coating object.
Therefore, it becomes necessary to prevent direct discharges from a metallic component such as air motor, for holding discharge energy below an ignition level. In this connection, discharge energy E can be expressed by Equation 1 below, wherein C is the electrostatic capacitance of a part holding electric charges to be discharged, and V is the voltage across the discharging part and a coating object.
E=½CV
2
  [Equation 1]
Accordingly, in case a rotary atomizing head is formed of an insulating material, the energy of discharges from the rotary atomizing head itself can be suppressed to a low level because its electrostatic capacitance is small. However, in that case it is difficult to suppress discharges from an air motor which is located in the vicinity of the rotary atomizing head and which has a large electrostatic capacitance.
As a countermeasure for preventing discharges from the air motor, it is conceivable to increase the discharge distance between the air motor and a coating object by using a rotational shaft which is formed of an insulating material and relatively large in length. However, in the case of a rotational shaft of an increased length, it is very likely that fluttering occurs to the rotational shaft, thereby impairing mechanical stability of the air motor and shortening its service life to a considerable degree.
Discharges from the air motor can also be prevented, for example, by inserting a high resistance between the air motor and a high voltage generator in such a way as to lower the voltage to be applied to the air motor. However, a reduction in application voltage to the air motor will lead to a reduction in paint particle charging rate and as a result to a reduction in paint deposition efficiency.
Further, there has been a method of providing an anti-spark control circuit in a high voltage generator to prevent such spark discharges as would lead to ignition (e.g., as disclosed in Japanese Laid-Open Patent Publication No. H6-269701). However, a spark preventing method using a control circuit of this sort has a problem that it is not essentially useful for prevention of ignition, as clearly stipulated in Regulations by National Fire Preventing Association of the United States.
DISCLOSURE OF THE INVENTION
In view of the above-mentioned problems with the prior art, it is an object of the present invention to provide a rotary atomizing head type coating machine which is particularly so arranged as to prevent spark discharges between a rotary atomizing head and a coating object without lowering paint deposition efficiency.
According to the present invention, in order to solve the above-mentioned problems, there is provided a rotary atomizing head type coating machine which comprises: a cover of a tubular shape formed of an insulating synthetic resin material; an air motor mounted within the cover and formed of a conducting metallic material; a rotational shaft formed of an insulating material passed axially through and rotated by the air motor; a rotary atomizing head formed of an insulating synthetic resin material in a bell-like shape having a mounting portion at a rear end and paint releasing edges at a fore end thereof, and mounted on the rotational shaft at an axially spaced position from a fore end of the air motor; an on-head semi-conductive coat film provided on outer peripheral surfaces of the rotary atomizing head for charging paint particles to be sprayed from the rotary atomizing head; a power supply semi-conductive coat film provided either on inner peripheral surfaces of the cover or on outer peripheral surfaces of the rotational shaft between the fore end of the air motor and a rear end of the rotary atomizing head for supplying the rotary atomizing head with a high voltage applied to the air motor; a first arcuately curved portion formed in a ring-like shape by the use of an insulating synthetic resin material applied with a semi-conductive coat film on outer peripheral surfaces thereof or by the use of a conducting metallic material, and provided between the fore end of the air motor and the po

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Rotary atomizing head type coating device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Rotary atomizing head type coating device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Rotary atomizing head type coating device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2547684

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.