Guide catheter and guidewires for effecting rapid catheter...

Surgery – Diagnostic testing – Flexible catheter guide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S194000, C604S103040

Reexamination Certificate

active

06251084

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to guidewires and guide catheters used in vascular catheterization procedures, and to techniques for performing catheter exchanges.
BACKGROUND OF THE INVENTION
In vascular catheterization procedures it often is necessary for a physician to use different catheters in the diagnosis or treatment of a particular blood vessel. For example, when performing percutaneus transluminal coronary angioplasty (PTCA), a physician commonly will use a series of dilatation catheters to be inserted into the patient. Each of the catheters has a different shape, size, or configuration suited for a specific purpose.
Dilatation catheters, and particularly those used for PTCA, typically include an elongate flexible shaft of the order of 150 cm long having a dilatation balloon mounted to the distal end of the shaft and an inflation lumen extending longitudinally within the shaft from its proximal end to the interior of the balloon so that the balloon may be inflated and deflated. Typically, such PTCA catheters also are provided with a full length guidewire lumen that is open at the distal tip of the shaft at a distal outlet opening. The proximal end of the guidewire lumen is open at the proximal end of the catheter. The guidewire lumen receives a guidewire which, when the guidewire and catheter are placed within a patient's artery, can be manipulated to guide the wire and catheter to the desired branch of the patient's arteries.
Typically, the balloon dilatation catheter and guidewire are guided to the entrance to the coronary arteries by a previously placed guide catheter. The guide catheter commonly is percutaneously inserted into the patient's femoral artery and is advanced along the aorta toward the heart. The guide catheter typically is provided with a preshaped distal tip adapted to remain at the coronary ostium leading to the coronary artery. Once placed, the guide catheter provides direct, quick access to the entrance to the coronary arteries.
It is common during a PTCA procedure for the physician to exchange the balloon catheter for another catheter, for example, if it is desired to change balloon sizes. This may occur, for example, if the physician initially performed a partial dilatation with a small diameter balloon and then wished to further dilate the patient's artery by using a catheter having a larger balloon. Treatment of multiple lesions in an artery often requires three or more different balloon sizes. Each change in balloon size requires a catheter exchange.
Such a catheter exchange may be accomplished in several ways. In one technique, the conventional guidewire which may be approximately 175 cm long is removed from the in situ balloon catheter and is replaced with a longer exchange wire, typically about 300 cm long. The length of the exchange wire that extends out of the patient is greater than the length of the balloon catheter thus providing a means by which the guidewire may be grasped at all times to prevent inadvertent withdrawal of the guidewire as the catheter is withdrawn. Once the catheter is withdrawn over the exchange wire, the next catheter can be threaded over the exchange wire and inserted into the patient, the exchange wire providing a direct path to guide the catheter to the portion of the artery to be dilated. If desired, the exchange wire then may be removed and replaced with a shorter conventional wire, although some physicians may prefer to permit the exchange wire to remain in place for the remainder of the procedure.
Another technique omits the necessity for an exchange wire by providing a guidewire extension that is attached to the proximal end of the guidewire thereby effectively extending the length of the guidewire that protrudes out of a patient sufficiently to permit the catheter to be withdrawn and a new catheter to be threaded back into the patient without losing guidewire position.
Still another technique for performing a catheter exchange is that described in “New Instruments for Catheterization and Angiocardiography” by Bjorn Nordenstrom,
Radiology
, Vol. 85, 1965, pp. 256-259, which describes a catheter having a relatively short guidewire lumen at the distal end of the catheter, the guidewire lumen having a proximal terminal opening located distally of the proximal end of the catheter shaft. In this arrangement, the guidewire passes through the catheter shaft only for a segment of the length of the shaft. The catheter can be moved along the guidewire in the fashion of a “monorail”. Because the guidewire lumen is relatively short and is considerably shorter than the overall length of the catheter, the catheter can be withdrawn from the patient over the original guidewire without dragging the guidewire out of the artery together with the catheter because the length of guidewire protruding from the patient is longer than the length of the guidewire lumen of the catheter. Thus, a portion of the guidewire is exposed at all times and may be grasped by the physician. Such a monorail system has recently been incorporated into PTCA catheters as illustrated, for example, in U.S. Pat. Nos. 4,762,129 (Bonzel) and 4,748,982 (Horzewski).
Although the use of the monorail system facilitates catheter exchanges, the PTCA catheters in which the monorail system have been incorporated have presented some difficulties. One of the problems presented is that because the guidewire only extends through a relatively small portion of the overall length of the catheter, the remaining portion of the catheter shaft is unsupported by the guidewire. When the balloon catheter and guidewire are advanced through the guide catheter by pushing the catheter shaft, the unsupported portion of the catheter shaft tends to buckle within the guide catheter. Buckling of the catheter shaft within the guide catheter increases the number and area of points of contact between the catheter shaft and the inner surface of the guide catheter lumen, thus increasing friction and causing the balloon catheter to bind up in the guide catheter and impairing the ability of the catheter to be pushed along the guidewire. The tendency to become bound up in the guide catheter increases with the extent to which the catheter is advanced through the guide catheter and prevents the catheter from being advanced into distal coronary vasculature. The tendency for the dilatation catheter shaft to buckle is particularly acute in the region of the aortic arch.
Additional difficulties presented by the monorail system include the inability to exchange guidewires after the monorail catheter is inserted into the guide catheter. For example, if a physician decides that a more flexible guidewire is required, a monorail catheter must be fully withdrawn to access the proximal end of its short guidewire lumen. Moreover, once withdrawn, the catheter cannot direct the new guidewire to the previously achieved position within the coronary artery; the guidewire must be steered anew beyond the distal end of the guide catheter.
Another disadvantage is that a monorail catheter cannot be exchanged with a conventional dilatation catheter having a full-length guidewire lumen unless an exchange wire is utilized. Further, the shortened guidewire lumen of a monorail catheter requires a separate, full-length lumen for measurement of pressure or injection of dye or other fluids. It is desirable to use the guidewire lumen to accomplish such fluid introductions or pressure measurements to eliminate the need to provide an extra lumen. The provision of an extra lumen must increase the overall outer diameter of the dilatation catheter which may prevent its use in smaller arteries.
It is among the general objects of the invention to provide an improved guide catheter and guidewire system having a rapid exchange feature which avoids the foregoing and other difficulties.
SUMMARY OF THE INVENTION
The present invention enables a catheter exchange to be made without requiring any guidewire exchanges and without the problems of the monorail system. In accordance with the present invention

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Guide catheter and guidewires for effecting rapid catheter... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Guide catheter and guidewires for effecting rapid catheter..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Guide catheter and guidewires for effecting rapid catheter... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2546756

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.