Semiconductor X-ray photocathodes devices

Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Low workfunction layer for electron emission

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S011000, C257S233000, C257S442000, C257S443000, C257S466000, C313S309000, C313S336000, C313S351000, C313S500000, C313S501000

Reexamination Certificate

active

06201257

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to x-ray photocathode devices and detectors. In particular, it relates to photocathodes combining solid-state detector and emitter technologies. It also pertains to x-ray and gamma-ray detectors which discriminate photon energy and high-speed x-ray or gamma-ray photon counters. This invention also relates to sensors that visualize or image x-ray or gamma-ray sources.
BACKGROUND OF THE INVENTION
Conventional photocathodes are used in a number of photon amplifier applications including photomultipliers (PMTs), microchannel-plate (MCP) amplifier tubes and Digicons. The photocathode detects the photon and emits an electron. The electron (i.e., the photoelectric current) is amplified by one of the previously mentioned technologies and the resulting signal is larger than the sensor noise. This amplification generally eliminates the need for extensive noise filtering and allows high-speed photon counting and energy-discrimination operations. However, conventional photocathodes and newer transferred electron photocathodes have relatively low quantum efficiencies and respond to photons in a very limited spectral range around the visible spectrum, from the long wavelength ultraviolet to the near infrared: wavelengths from about 0.1 microns to 1.7 microns. Quantum efficiency in this context refers to the average number of electrons emitted per incident photon of a given wavelength. PMTs, a particular electron amplifier using dynodes, are applied in a number of medical and visible-laser detection applications. Microchannel Plate (MCP) amplifier tubes are used in similar applications but because of their multiple-pixel imaging capability they are also used in night-vision goggles and imaging laser radar (LADAR). Night-vision MCP image tubes are vacuum structures containing a photocathode, a microchannel plate and a phosphor. Microchannel-plates amplify the photocathode electrons produced by dim-light photons, by collisions with the glass walls of the MCP, and these electrons, in turn, produce increased levels of visible light via collision with the phosphor. In photon counting applications, a microchannel plate or photomultiplier tube increases the single-photon signal level above the sensor noise, thereby increasing sensitivity of the sensor to the level at which photon counting can be performed. In a digicon the electron emitted by a photocathode is guided by a magnetic field and accelerated by an electric field, to energies of thousands of electron volts. The photoelectron impacts a silicon diode array and amplification results by impact onization which requires only about 3.3 eV to produce an lectron-hole pair in silicon.
Currently there are no photocathodes for x-rays, wavelengths shorter than about 0.01 microns. Therefore x-ray signal amplification first requires the conversion of x-rays to photons in the visible spectrum using scintillators or phosphors. These visible photons can then be amplified by conventional photocathode technologies discussed above. The problems with this amplification method stem from the inefficient conversion of x-rays to visible-light photons and with the poor quantum efficiencies of the photocathodes that can detect the scintillator-produced photons. Typically 50 eV of x-ray energy is required for a visible photon and photocathode quantum efficiencies are below 20%. Thus about 250 eV is required for each visible photon detected or for each electron emitted from the photocathode. In contrast the photocathode of the present invention would require only about 3.3 eV for each electron emitted. Furthermore the statistical noise of the photocathode of the present invention is less than a scintillator because the individual ionization events in the present invention are not completely independent.
There are many applications which require the discrimination of x-ray or gamma-ray energy. Nuclear medicine requires the discrimination of non-scattered gamma-rays from scattered gamma-rays to determine the absorption of radioactive compounds in tissue with sensors outside the body. The more accurately the energy discrimination can be done the faster the analysis can be achieved. However, the inefficiency of scintillator, gamma-ray-photon to visible-photon conversion limits the accuracy of energy discrimination. Energy resolution increases as the energy required to obtain a photocathode electron decreases. Energy resolution is also related to the statistics of x-ray or gamma-ray photon detection.
High-count-rate x-ray detectors are important in many areas of science where there is a Large background and high signal-to-noise ratio is obtained by energy discriminating the signal from the background. Generally solid-state detectors are used instead of scintillators to achieve this accuracy because of the high efficiency of conversion of x-ray energy to electron-hole pairs.
Solid-state detectors do not normally include amplification so signal filtering is required to reduce noise and limit uncertainty. This filtering, however, reduces the speed of operation, limiting the flux of photons that the sensor can process without saturation. Application examples are the non-invasive high-speed quantitative measure of lead in bones and other elements in other organs. (I. L. Preiss and M. A. Tariq On the use of L x-ray fluorescence for bone lead evaluation, Radiocanal. Nucl. Chem. Let. 164 (6), 381-385 (1992), I. L. Preiss and T. PTAK, Trace Element Profiles of Biological Samples Using Radioscope X-ray Fluorescence, Nuclear Instruments and Methods in Physics search A242 (1986) 539-543.) Data collection is particularly limited in structural biology investigations of dilute samples where detectors have not kept pace with synchrotron source development. The Extended X-ray Absorption Fine Structure (EXAFS) technique, counting fluorescent x-rays, has been known for some time, for example, but the counters have very limited data rates which cannot adequately take advantage of current and future synchrotron source fluxes.(J. Jaklevic et al, Solid State Communications, 23, 679 (1977)) Many samples have low concentrations of the element of interest which is embedded in a matrix of energy absorbing molecules. Under these conditions conventional detectors expend their count rate separating the desired-element-fluorescence x-rays from the larger number of quasi-elastic and matrix-fluorescence x-rays. A widely used x-ray fluorescence-detected spectroscopy detector is the 13-element Canberra Ge Detector (S P. Cramer et al, A 13-Element Ge Detector For Fluorescence EXAFS, Nuclear Instruments and Methods in Physics Research, A266, D586 (1988)). Cramer et al shows the count rate of a single detector element, using a 1 &mgr;s shaping time (electronic noise of about a few hundred eV) corrected for dead time losses, is about 2×10
5
photons/sec). This count rate is inadequate for many synchrotron-based experiments and the energy resolution is far from optimal.
BRIEF DESCRIPTION OF THE PRESENT INVENTION
The Advanced Semiconductor Emitter Technology for X-rays (ASET-X) photocathode devices described in this patent combine solid-state detector and emitter technologies into one device with very significant advantages over existing photocathode technology and x-ray or gamma-ray detector technology. In the present invention x-rays or gamma-rays are converted to electrons directly without the need for scintillators or phosphors. The direct conversion greatly decreases noise and allows much higher x-ray energy discrimination than previously possible. In addition the elimination of scintillators greatly simplifies the amplifier, reducing both the volume and cost of the associated x-ray sensor. ASET-X utilizes solid-state detector materials with high x-ray stopping power to convert x-rays to electrons and consequently high quantum efficiency is achieved for lower energy x-rays. These detector materials can not be used as photocathodes themselves but in combination with solid-state emitter technology they become very efficient x-ray photocathodes. One of the vi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor X-ray photocathodes devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor X-ray photocathodes devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor X-ray photocathodes devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2545428

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.