Method of minimizing undesirable brake release

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Railway vehicle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C246S1820BH, C246S16700M, C303S122150, C701S076000

Reexamination Certificate

active

06219595

ABSTRACT:

BACKGROUND AND SUMMARY OF THE INVENTION
The present invention relates generally to locomotive display and more specifically to a method of minimizing undesirable brake release and its use with, for example, a Locomotive Engineers Assist Display and Event Recorder (LEADER).
The LEADER System is a real-time, enhanced version of the Train Dynamics Analyzer (TDA), a long standing Locomotive Engineer training tool offered by the Train Dynamics Services Group of New York Air Brake. LEADER has the ability to display a real-time or “live” representation of a train on the current track, the trackage ahead, the dynamic interaction of the cars and locomotives (both head end and remote), and the current state of the pneumatic brake system. As a tool for the Locomotive Engineer, LEADER will allow insight into the effect of throttle changes and brake applications throughout the train providing feedback and information to the Locomotive Engineer not currently available. The information LEADER offers provides an opportunity for both safer and more efficient train handling leading to enormous potential economic benefits.
The LEADER System has all the necessary information to predict the future state of the train given a range of future command changes (what if scenarios). With this ability, LEADER can assist the railroads in identifying and implementing a desired operating goal; minimize time to destination, maximize fuel efficiency, minimize in train forces, (etc.) or a weighted combination thereof. LEADER will perform calculations based on the operational goal and the current state of the train to make recommendations to the Locomotive Crew on what operating changes will best achieve these goals.
The TDA functionality was enhanced to assist in training Locomotive Engineer how to better handle their trains. Designs of simulators with math models are shown in U.S. Pat. Nos. 4,041,283; 4,827,438 and 4,853,883. Further capability was added to investigate accidents by playing the event recorder data through the TDA, monitoring critical physical parameters. Through the years data was collected from instrumented trains and laboratory experiments, allowing the models used by the TDA to be refined. On board data collection for off-loading is shown in U.S. Pat. Nos. 4,561,057 and 4,794,548.
As the TDA became a training tool, more miles of track were added to the database each year as customers required training in various areas of their property. Over 120,000 miles of track have been digitized for use with the TDA. This track provides a basis for the track database required by LEADER.
As more Locomotive Engineers became familiar with the TDA display through training sessions, it became apparent that a real time version of the TDA in the cab of a locomotive would offer substantial benefits in improved train handling. Improved train handling would in turn foster safety and economic benefits. Technological limitations prevented the realization of LEADER for a number of years, but modern levels of computer processing power, decreased size of electronics, increase communication capability and increase size and readability of flat panel color displays has made LEADER a reality. Earlier designs for on board computer controllers is shown in U.S. Pat. No. 4,042,810 with a description of math models.
The LEADER system provides safe and effective control of a train through display or control of the dynamically changing parameters. It accurately provides train speed within designated speed limits. It maintains in-train coupling forces with safe limits to prevent train break-in-twos. It maintains safe levels of lateral forces between the wheels and the rails of all cars to prevent cars from departing from the track and derailing. It provides control of slack (or shock (buff)) action or shock for both draft and between cars to reduce damage to valuable lading and to prevent potential train separation or break-in-twos. It maintains train stop and slow downs to prevent the train from entering unauthorized territories that could cause accidents with other train traffic. It determines the optimum locomotive throttle setting and train brake application to minimize fuel consumption and wear of brake shoes and wheels. It monitors total locomotive performance, train brake performance and it provides advisement if performance is faulty. It forecasts the estimate time of arrival of train to various switch points, signals locations or final destinations to advise the engineer and rail traffic control centers. It records various key data for later downloaded analysis for operational studies and accident investigations as well as engineer qualifications.
The present invention provides a method of and a system for minimizing undesirable brake release in the brake system of a train having a pneumatic brake on each car connected to a brake pipe which is controlled by a brake pipe controller. The method includes determining the status of the brake system throughout the train and determining a minimal brake pipe pressure reduction for the brake pipe controller, using the status of the brake system. The determined minimal brake pipe pressure reduction is displayed by itself or in combination with the brake pipe pressure reduction produced by the brake pipe controller. The status of the brake pipe system includes determining the brake pipe pressure at each car which may be by actual measurement or using train brake system modeling. The status of each car may also include determining the minimal brake pipe pressure as a function of the pressure of the reservoir of each car by itself or in combination with the brake cylinder pressure. The minimal brake pipe pressure for each car may be set at 3 PSI less than the pressure of the reservoir of each car. Another method would include setting the minimal brake pipe pressure to the reservoir pressure for a brake cylinder pressure greater than a first value and setting the minimal brake pipe pressure to a pressure less than the reservoir pressure for a brake cylinder pressure less than the first value.
The brake pipe controller setting or desired brake pipe pressure reduction is also determined and the minimal brake pipe pressure reduction can be determined using the brake pipe controller setting. The requested brake pipe pressure reduction is compared to the determined minimal brake pipe pressure reduction. An indication is provided if the requested brake pipe pressure reduction is less than the determined minimal brake pipe pressure reduction. The determined minimal brake pipe pressure reduction can be displayed if the requested brake pipe pressure reduction is less than the determined minimal brake pipe pressure reduction and the requested brake pipe pressure reduction can be displayed if the requested brake pipe pressure reduction is greater than the determined minimal brake pipe pressure reduction.
If the requested brake pipe pressure reduction is less than the minimal brake pipe pressure reduction, the brake pipe controller is controlled to the minimal brake pipe pressure reduction. If the requested brake pipe pressure reduction is greater than the minimal brake pipe pressure reduction, the brake pipe controller is controlled to the requested brake pipe pressure reduction.
The train may include a plurality of brake pipe controllers. In which case, the status of the pneumatic brake system at each brake pipe controller is determined and the minimal brake pipe pressure reduction is determined for each brake pipe controller.
The locomotive display system for the train would include a display of the brake pipe pressure reduction at the locomotive and a display of a minimum brake pipe pressure reduction which minimizes undesirable release in the brake system. The brake pipe pressure reduction may be an analog display and the minimum brake pipe pressure reduction is an indicia on the analog display. A digital display may also be provided for the brake pipe reduction by itself or in combination with the analog display. A processor is provided which determines the minimal brake pipe pressure redu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of minimizing undesirable brake release does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of minimizing undesirable brake release, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of minimizing undesirable brake release will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2544401

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.