Nozzle

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S036000, C604S039000, C604S181000, C604S187000, C604S257000, C604S264000, C604S275000, C604S279000, C604S286000, C604S902000

Reexamination Certificate

active

06235008

ABSTRACT:

This invention relates to a novel douche nozzle for use in the application of vaginal douche fluids.
Douche products are known and generally comprise a nozzle in the form of an elongate tubular body made of smooth surfaced material, e.g smooth plastics material, with an opening in their proximal end for entry of a douche fluid, a generally longitudinal channel for the fluid, and one or more lateral apertures in the walls of the body for outward lateral flow of the fluid during use. Generally such nozzles are attachable at their proximal end to a squeeze bottle or other container for the fluid, e.g. by a screw thread or other type of convenient connector.
Douche nozzles are for example disclosed in U.S. Pat. No. 3,228,396, U.S. Pat. No. 3,474,788, U.S. Pat. No. 3,968,797, U.S. Pat. No. 4,068,662, U.S. Pat. No. 4,133,313, U.S. Pat. No. 4,167,186, U.S. Pat. No. 4,256,107, U.S. Pat. No. 4,309,995, U.S. Pat. No. 4,351,336, U.S. Pat. No. 4,405,306, U.S. Pat. No. 4,519,794 and U.S. Pat. No. 4,894,053.
Known douche nozzles suffer from the problem that the flow rate of fluid out through the apertures has not been optimised. A further problem is that transfer of fluid from the channel out through the apertures has not been optimised, which may cause development of pressure and poor performance in cleansing. Further it is desirable that the cervix is not irrigated by the douche fluid, and known douche nozzles do not achieve this requirement.
It is an object of this invention to provide an improved douche nozzle which to some extent at least overcomes the problems of known douche nozzles. Other objects and advantages of the invention will be apparent from the following description.
According to this invention, a douche nozzle suitable for dispensing a douche fluid comprises an elongate tubular body having an external surface and an internal substantially longitudinal channel terminating in an opening at the proximal end of the nozzle suitable for entry into the channel of a douche fluid, the channel being closed at its distal end, the body having one or more lateral apertures in its wall and communicating with the channel to enable fluid flowing along the channel to exit the body, a portion of the external surface of the body comprising one or more longitudinally extending recessed grooves having fluid diverter means, and characterised in that there is more resistance to fluid flow within the channel than there is resistance to fluid flow out through the apertures.
This characterising feature of the invention contributes to the effect of ensuring that the pressure of the fluid drops as the fluid flows from the channel out through the apertures.
Preferably the grooves are of such a size, shape, and orientation relative to the surface of the nozzle that in use there is less resistance to fluid flow along the grooves than there is resistance to fluid flow out through the apertures. This too contributes to the effect of ensuring that there is less fluid pressure as the fluid comes into contact with human tissue.
In a preferred embodiment of the invention the total area of the apertures in the surface of the body is greater than the cross sectional area of the longitudinal channel, at least between the opening at the proximal end and the apertures. This contributes to the avoidance of a squirting or jetting effect of the fluid out through the apertures. For example the ratio total area of the apertures:cross sectional area of the longitudinal channel may be in the range 1.0001:1 to 3:1, suitably between about 1.01:1 to 2:1.
These features of the invention assist in reducing the energy or pressure with which the fluid exits the nozzle and contacts the vaginal tissue, and therefore tends to alleviate the abovementioned problems associated with overpressurisation. In particular the constructional features of the nozzle of the invention are such that the resistance to fluid flow pressure is greatest inside the channel, before the fluid contacts the tissue, thus preventing any build up of pressure as the fluid flows out of the nozzle through the apertures and along the grooves and as it comes into contact with vaginal tissue during use. Thus an object achieved by the nozzle of the invention is a reduction of fluid flow pressure at the interface between the nozzle and the vaginal tissue. Resistance to fluid flow is greatest inside the nozzle, is less across the apertures and is reduced again in the grooves, thus ensuring that little pressure is developed as the fluid contacts the vaginal tissue.
In a preferred embodiment of the invention, the whole or part of the flow of fluid is diverted by the fluid diverter means from a lateral into a distal to proximal direction. This assists in reducing the tendency of the nozzle to cause irrigation of the cervix, and furthermore encourages the fluid to flow downwards during use, both assisting the douching action and contributing to the reduction in pressure as the fluid flows downwards along the grooves. Consequently it is preferred that the apertures are provided toward the distal end of the body, suitably in the half of the length of the body closest to the distal end. Suitably the apertures may be within 0.15 and 0.5, preferably within 0.2 and 0.4, of the distance from the distal end to the proximal end.
In addition to diverting the flow of fluid into a distal to proximal direction part of the fluid flow may be diverted into other directions, e.g. tangentially to the surface of the nozzle, or in a plane including the longitudinal axis of the nozzle.
In one embodiment of the invention, the flow of fluid is diverted by diverter means comprising the location of each aperture in the surface of the body, and/or by the location of each aperture adjacent to one or more diverter surfaces which are so profiled and/or positioned that at least part of the flow encounters the diverter surface is thereby diverted. If the walls of the body are thick enough the diverter means may also comprise a profiling of the walls of the apertures.
In a preferred construction of the nozzle, each aperture is located in an area on the proximal side of a diverter surface. In such a construction, fluid flowing outwardly through the aperture has a natural tendency to spread sideways, and the encounter between the flow of fluid and the so-positioned diverter surface diverts the flow into a distal to proximal direction.
Diverter surfaces may also be included which divert the flow of fluid into the above-mentioned other directions.
The diverter surface may be in the form of a wall structure or surface adjacent to the aperture. The wall surface or structure may suitably be in the form of a generally laterally inclined planar or concave (relative to the aperture) surface formed in the surface of the body of the nozzle.
In a preferred embodiment of the invention, each aperture is located within and at the distal end, of a longitudinally extending recessed groove in the outer surface of the body, the extreme distal end of the groove comprising a diverter surface in the form of a wall surface. The location of apertures in such grooves further encourages the douche fluid to flow in a distal to proximal direction, i.e. within the grooves. In addition the location and size of the apertures within the grooves is an important factor in optimizing the fluid flow pressure, in combination with the channel size and cross sectional area. The apertures may suitably be at a distance proximally from the extreme distal end of the groove, typically being within about 0.3 of the length of the groove from the extreme distal end of the groove.
Apertures may also be located in other positions in the surface of the nozzle.
It has also been found that selection of a particular profile of such grooves is important in achieving optimum flow volume, pressure and direction, and moreover in reducing the tendency for musculature to close around the nozzle and thereby obstruct the flow of fluid. Therefore suitably the grooves do not extend for the entire length of the tubular body, but end about 0.2 to 0.35 of the distance

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nozzle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nozzle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nozzle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2542114

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.