Process for the oxidation of polyethylene waxes

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S327900, C525S333700, C525S333800, C525S340000, C525S383000, C525S386000

Reexamination Certificate

active

06211303

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to a process for preparing polar wax products by oxidation of nonpolar polyethylene waxes prepared using metallocene catalysts. For the purposes of the present invention, the term “polyethylene waxes” refers to both ethylene homopolymers and copolymers of ethylene with &agr;-olefins having a chain length of C
3
-C
18
, each having a melt viscosity measured at 140° C. of from 5 to 20000 mPa.s.
It is known that nonpolar polyethylene waxes can be oxidized to form polar waxes. Such oxidation products of waxes and processes for preparing them are described, for example, in U.S. Pat. No. 3,278,513, DE-A-1227654, DE-A-2241057 and DD 283730. The nonpolar starting materials are generally reacted by treating their melts with oxygen or oxygen-containing, possibly additionally ozone-containing, gas mixtures.
As auxiliaries for initiating the oxidation reaction, oxidized polyethylene waxes can be added to the raw material. For example, U.S. Pat. No. 3,692,877 describes the addition of low molecular weight oxidized polyolefins having molar masses of from 500 to 10000. Such oxidized polyolefins comprise long-chain carboxylic acids having average chain lengths of greater than 35.
Depending on the conditions and the duration of the reaction, different degrees of oxidation can be set. The resulting reaction products contain many oxygen-functional groups, e.g. carboxyl, ester, carbonyl and hydroxyl groups. The degree of oxidation is usually characterized by means of the acid number which is a measure of the concentration of carboxyl functions present.
The oxidized polyolefin waxes obtained in this way are employed, inter alia, as auxiliaries for plastics processing or for producing aqueous dispersions, e.g. for use in cleaners and polishers, in textile processing, for waterproofing and for coating citrus fruits.
The polyethylene waxes used as raw material for the oxidation are, for example, obtained by thermal degradation of high molecular weight polyethylene or by free-radical polymerization of ethylene by the high pressure process, also by metal-catalyzed homopolymerization of ethylene or metal-catalyzed copolymerization of ethylene with &agr;-olefins. Suitable metal catalysts are those of the Ziegler-Natta type or, more recently, also metallocene compounds. The latter contain titanium, zirconium or hafnium atoms as active species and are generally used in combination with cocatalysts, e.g. organoaluminum or boron compounds, preferably aluminoxane compounds. If necessary, the polymerization is carried out in the presence of hydrogen as molar mass regulator.
Corresponding polymerization processes which employ metallocene catalysts are described, for example, in EP-A-321 851, EP-A-321852, EP-A-571882 and EP-A-602509. Compared to Ziegler-Natta systems, metallocene catalysts display extremely high activities. The amounts of catalyst needed are so low that they do not interfere in oxidative further processing of the waxes. Decomposition and removal of the metallocene catalysts, which is associated with considerable expense, can be omitted. The metallocene-catalyzed polymerization allows the synthesis of polymer waxes having widely variable properties, sometimes novel property combinations, so that specific use requirements can be set in a more targeted manner than is possible using conventional polymerization processes. The same is also true for the oxidation products obtainable from such polymer waxes.
A disadvantage which has been found in the oxidation of wax-like polyolefins prepared using metallocenes is the formation of high molecular weight by-products, in the extreme case gel-like, crosslinked by-products. This can lead to an increase in the viscosity of the reaction mixture during the reaction, as a result of which mixing of the reaction mixture with oxygen is hindered and the reaction rate is reduced. Furthermore, deposits are formed on the walls and internal fittings of the oxidation reactor and the use quality of the products, for example the color, are impaired. This behavior is observed particularly when the reaction is carried out in an economically advantageous manner using air as oxidant and at atmospheric pressure or slight superatmospheric pressure.
It has now surprisingly been found that the disadvantages indicated can be avoided by adding a low concentration of inorganic or organic acids to the reaction mixture before commencement or in the early stage of the oxidation.
SUMMARY OF THE INVENTION
The invention accordingly provides a process for the oxidation, in the melt by means of oxygen or oxygen-containing gas mixtures, of ethylene homopolymers and copolymer waxes prepared by means of metallocene catalysts, wherein the oxidation is carried out with addition of monobasic or polybasic inorganic acids or monobasic or polybasic carboxylic acids having 1-6 or 2-6 carbon atoms and the amount added is, based on the wax raw material, from 0.01 to 1.0% by weight.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Suitable polyethylene wax raw materials are homopolymers of ethylene or copolymers of ethylene with one or more &agr;-olefins. &agr;-Olefins used are linear or branched olefins having 3-18 carbon atoms. Examples of such olefins are propene, 1-butene, 1-hexene, 1-octene or 1-octadecene, also styrene. Preference is given to ethylene homopolymers and copolymers of ethylene with propene or 1-butene. The copolymers comprise 70-99.9% by weight, preferably 80-99% by weight, of ethylene.
Examples of metallocene catalysts used for preparing the polyolefin wax raw materials are:
bis(1,2,3-trimethylcyclopentadienyl)zirconium dichloride,
bis(1,2,4-trimethylcyclopentadienyl)zirconium dichloride,
bis(1,2-dimethylcyclopentadienyl)zirconium dichloride,
bis(1,3-dimethylcyclopentadienyl)zirconium dichloride,
bis(1-methylindenyl)zirconium dichloride,
bis(1-n-butyl-3-methylcyclopentadienyl)zirconium dichloride,
bis(2-methyl-4,6-di-i-propylindenyl)zirconium dichloride,
bis(2-methylindenyl)zirconium dichloride,
bis(4-methylindenyl)zirconium dichloride,
bis(5-methylindenyl)zirconium dichloride,
bis(alkylcyclopentadienyl)zirconium dichloride,
bis(alkylindenyl)zirconium dichloride,
bis(cyclopentadienyl)zirconium dichloride,
bis(indenyl)zirconium dichloride,
bis(methylcyclopentadienyl)zirconium dichloride,
bis(n-butylcyclopentadienyl)zirconium dichloride,
bis(octadecylcyclopentadienyl)zirconium dichloride,
bis(pentamethylcyclopentadienyl)zirconium dichloride,
bis(trimethylsilylcyclopentadienyl)zirconium dichloride,
biscyclopentadienyldibenzylzirconium,
biscyclopentadienyldimethylzirconium,
bistetrahydroindenylzirconium dichloride,
dimethylsilyl-9-fluorenylcyclopentadienylzirconium dichloride,
dimethylsilylbis-1-(2,3,5-trimethylcyclopentadienyl)zirconium dichloride,
dimethylsilylbis-1-(2,4-dimethylcyclopentadienyl)zirconium dichloride,
dimethylsilylbis-1-(2-methyl-4,5-benzindenyl)zirconium dichloride,
dimethylsilylbis-1-(2-methyl-4-ethylindenyl)zirconium dichloride,
dimethylsilylbis-1-(2-methyl-4-i-propylindenyl)zirconium dichloride,
dimethylsilylbis-1-(2-methyl-4-phenylindenyl)zirconium dichloride,
dimethylsilylbis-1-(2-methylindenyl)zirconium dichloride,
dimethylsilylbis-1-(2-methyltetrahydroindenyl)zirconium dichloride,
dimethylsilylbis-1-indenylzirconium dichloride,
dimethylsilylbis-1-indenyldimethylzirconium,
dimethylsilylbis-1-tetrahydroindenylzirconium dichloride,
diphenylmethylene-9-fluorenylcyclopentadienylzirconium dichloride,
diphenylsilylbis-1-indenylzirconium dichloride,
ethylenebis-1-(2-methyl-4,5-benzindenyl)zirconium dichloride,
ethylenebis-1-(2-methyl-4-phenylindenyl)zirconium dichloride,
ethylenebis-1-(2-methyltetrahydroindenyl)zirconium dichloride,
ethylenebis-1-(4,7-dimethylindenyl)zirconium dichloride,
ethylenebis-1-indenylzirconium dichloride,
ethylenebis-1-tetrahydroindenylzirconium dichloride,
indenyl-cyclopentadienyl-zirconium dichloride
Isopropylidene(1-indenyl)(cyclopentadienyl)zirconium dichloride,
Isopropylidene(9-fluorenyl)(cyclopentadienyl)zirconium dichloride,
phenylmethylsilylbis-1-(2-methylindenyl)zirconium dichloride.
The oxida

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the oxidation of polyethylene waxes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the oxidation of polyethylene waxes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the oxidation of polyethylene waxes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2538371

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.