Engine having increased boost at low engine speeds

Power plants – Fluid motor means driven by waste heat or by exhaust energy... – With supercharging means for engine

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06205786

ABSTRACT:

TECHNICAL FIELD
This invention relates generally to an engine and more particularly to an engine having a turbocharger and a supercharger.
BACKGROUND ART
Attempts have been made to provide an efficient and effective intake air supply system for engines. One such example, utilizes a turbocharger or twin turbochargers to increase the intake air supply to the engine increasing boost pressure and increasing output power. Thus, an exhaust gas from the engine which would be spent to the atmosphere is used by recovering the heat within the exhaust to drive a turbine, increasing efficiency. With the engine operating at or near high speed, an adequate supply of exhaust is available to drive the turbocharger and produce an efficient and effective air supply system for engines. However, at low speed sufficient exhaust to drive the turbocharger and produce an adequate supply of intake air is not available. Thus, the efficiency and effectiveness of the turbocharger is lost.
Other attempts have been made to provide and efficient and effective intake air supply for engines by incorporating a supercharger or blower. In these applications, a supercharger or blower is mechanically driven by the engine such as by a belt connected to a pulley on a crankshaft or by a gear or plurality of gears driven by the engine. With these systems, the low speed engine efficiency and effectiveness can be overcome by having a fixed speed ratio between the engine and the supercharger. For example, the speed of the supercharger can be 2 or 3 times that of the engine speed. Thus, the output of the supercharger at low engine speed can deliver adequate intake air for efficient and effective engine operation at low speed. The major disadvantage of using the supercharger is that power of the engine is used to drive the supercharger and can not be deliver as output power.
Attempts have also been made to combine the turbocharger system and the supercharger system. An example of one such system is disclosed in U.S. Pat. No. 4,903,488 issued to Noriyoshi Shibata on Feb. 27, 1990. The patent discloses a multiple compressed air supply system. A turbocharger is driven by an exhaust from an engine and a supercharger is drivingly connected to the engine by a belt and is driven by a crankshaft. The supercharger is driven at a constant speed relative to an engine speed. Thus, the effectiveness and efficiency of each system can be combined. However, with the system as disclosed, the efficiency and the effectiveness of the engine can be further improved.
The present invention is directed to overcoming one or more of the problems as set forth above.
SUMMARY OF THE INVENTION
In one aspect of the invention, an engine has a plurality of operating speeds. One of the plurality of the operating speeds being a low speed and another of the plurality of the operating speeds being a high speed. An air induction system defines a flow of intake air therein and an exhaust system defines a flow of exhaust gas therein. The air induction system is comprised of a turbocharger having a turbine section defining a turbine being driven by the flow of exhaust gas. A shaft is attached to the turbine and drives a compressor wheel. The compressor wheel compresses the flow of intake air and densifies the flow of intake air. A directional control valve has an outlet end, an inlet end being in fluid communication with the flow of intake air being compressed and densifies by the compressor wheel and a second inlet end. The directional control valve is movable between an open position and a closed position. The flow of intake air enters the inlet end with the directional control valve in the open position. And, the flow of intake air is prevented from entering the inlet end with the directional control valve in the closed position. A supercharger has an inlet end and an outlet end. The inlet end is in fluid communication with the flow of intake air. The flow of intake air is compressed and densifyed by the turbocharger prior to being communicated to the supercharger. And, the supercharger further compresses and densifies the intake air prior to exiting said outlet end. The outlet end is in fluid communication with the second inlet end of the direction control valve. And, with the directional control valve in the closed position the intake air is in fluid communication with the outlet end of the directional control valve. A motor is drivingly connected to the supercharger. The motor has a variable rate of speed and the variable rate of speed varies a quantity of flow of the intake air from the supercharger to the engine.
In another aspect of the invention, an engine has a plurality of operating speeds. One of the plurality of the operating speeds is a low speed and another of the plurality of the operating speeds is a high speed. An air induction system defines a flow of intake air therein and an exhaust system defines a flow of exhaust gas therein. The air induction system is comprised of a plurality of turbochargers, each having a turbine section defining a turbine being driven by the flow of exhaust gas. A shaft is attached to the turbine and drives a compressor wheel. The compressor wheel compresses the flow of intake air and densifies the flow of intake air. A plurality of directional control valves each have an outlet end, an inlet end being in fluid communication with the flow of intake air being compressed and densified by the compressor wheel. And, at least one of the plurality of directional control valves has a second inlet end. The plurality of directional control valves are movable between an open position and a closed position. The flow of intake air enters the inlet end of a respective one of the plurality of directional control valves with the plurality of directional control valves in the open position. The flow of intake air is prevented from entering the inlet end with the plurality of directional control valves in the closed position. A supercharger has an inlet end and an outlet end. The inlet end is in fluid communication with the flow of intake air. The flow of intake air is compressed and densifyed by the plurality of turbochargers prior to being communicated to the supercharger. And, the supercharger further compresses and densified the intake air prior to exiting the outlet end. The outlet end is in fluid communication with the second inlet end of the at least one of the plurality of directional control valves. With the plurality of directional control valves in the closed position, the intake air is in fluid communication with the outlet end of the plurality of directional control valves. A motor is drivingly connected to the supercharger. The motor has a variable rate of speed. The variable rate of speed varies a quantity of flow of the intake air from the supercharger.
In another aspect of the invention, a method of increasing a flow of intake air to an engine is disclosed. The engine defines a plurality of speeds, one of the plurality of speeds being a low speed and another of the plurality of speeds being a high speed. The engine further includes at least a turbocharger. Increasing the flow of intake air to the engine comprises the following steps. Directing the flow of intake air to a turbocharger. Compressing and densifying the flow of intake air within the turbocharger. Monitoring the flow of intake air to the engine. Monitoring a quantity of fuel to the engine. Calculating a proportional relationship of the quantity of fuel to the flow of intake air. Directing the flow of intake air from the turbocharger to at least one of a directional control valve and a supercharger. Driving the supercharger with a motor. Compressing and densified the flow of intake air further within the supercharger. And, directing the compressed and densifyed flow of intake air through the directional control valve prior to directing the increased flow of intake air to the engine.


REFERENCES:
patent: 2296268 (1942-09-01), Buchi
patent: 2359615 (1944-10-01), Browne et al.
patent: 2877622 (1959-03-01), Antonissen
patent: 3469393 (1969-09-01), Tryhorn
pate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Engine having increased boost at low engine speeds does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Engine having increased boost at low engine speeds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Engine having increased boost at low engine speeds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2536375

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.