Use of 9-substituted hypoxanthine derivatives to stimulate...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06288069

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to use of multifunctional pharmaceutical compounds possessing unique and unexpected combinations of biological activities. In particular, the present invention is directed to use of such compounds to stimulate regeneration of mammalian motor nerve tissue.
BACKGROUND OF THE INVENTION
The modification of pharmaceutical and biologically active compounds to alter or enhance their functional properties is known in the art. Typically, prior art efforts have been directed to the production of carrier-bound drugs in which carrier molecules having selective physical properties, such as enhanced water solubility, are chemically attached to biologically active compounds. For example, Jacobson and colleagues have developed what is referred to as the “functional congener” approach to the design of carrier-bound drugs (Jacobson, K. A., in
Adenosine Receptors
; Cooper, D. M. F., Londos, C., Eds.,
Receptor Biochemistry and Methodology
; Venter, J. C., Harrison, L. C., Eds., Alan, R., Liss: New York, 1988, Vol. 11, pp. 1-26). This approach involved the modification of well-defined drug molecules at non-sensitive positions in a manner that retained the drug's ability to bind at its specific receptor site. In order to produce a chemically functionalized drug congener, they modified the drug molecule by the introduction of a chemical functional group which could then be covalently attached to a carrier molecule. This produced a bifunctional molecule in which one portion (the “pharmacophore”) contributed its biological activity, and the second portion, or carrier, imparted its selective physical properties such as enhanced receptor attachment or water solubility. Using this approach, functional congener compounds were prepared using catecholamines, adenosine receptor agonists and antagonists, and muscarinic agents.
However, recent developments in the understanding of biological mechanisms such as the binding of selective ligands to receptors and their related functions and such seemingly diverse physiological systems as the cardiovascular system, the central nervous system, and the immune system has stimulated efforts to discover alternative methods for designing biologically active compounds exhibiting properties which will selectively treat or regulate such seemingly diverse physiological systems without serious or disabling side effects that might otherwise occur. For example, adenosine receptors have been found in the cardiovascular system, the central nervous system, and the immune system. Accordingly, it was originally believed that the development of adenosine analogues would be effective in regulating or modifying the biological activities associated therewith. However, the ubiquitous distribution of adenosine receptors has resulted in the production of serious and disabling side effects in what were originally believed to be unrelated biological systems, thereby significantly reducing the therapeutic usefulness of adenosine analogues.
Similar interrelationships have also been discovered to exist between the mammalian immune system and the mammalian nervous system. Over the past several decades numerous researchers have added considerable detail to the overall understanding of the mammalian immune system and its importance in maintaining overall physical health. In more recent years, similar detail has evolved in the study of the nervous system. As more and more information was developed in the seemingly independent fields of study, a number of close functional parallels began to appear between the two physiological systems. For example, both systems are concerned with the storage of information and use soluble chemicals to transmit signals between cells. Additionally, natural endogenous substances, such as hormones and transmitters, are active on the cells of both systems. Even more significantly, some common functions between the two systems are based upon similar chemical structures or markers on the surfaces of both nerve cells and immune cells. The recent discovery that the CD4 receptors targeted by the AIDS virus are present on both the T4 lymphocyte and on neurons is one of the more dramatic examples of the close relationship between the nervous system and the immune system.
Further crossing the classically imposed barriers between the fields of immunology and neurology, recent developments in the understanding of Alzheimer's disease have implicated an immunologic component that may be present in this neurological disorder. It has been proposed that both the anatomical and biochemical specificity of the defects seen in Alzheimer's disease could be explained by an immunologic attack on the brain blood vessels themselves with secondary involvement of neuronal, glial, or synaptic constituents contributing to the formation of senile plaques, or an immune-mediated compromise of vessels associated with an immune attack on specific neuronal, glial, or synaptic constituents (Appel, S. H., Neurobiol. Aging, 7:512, 1986).
Additionally, circumstantial evidence for any immunological component in neurologic disorders is also provided by the altered suppressor cell function and aging populations, and more specifically in Alzheimer's disease (MacDonald et al., Clin. Exp. Immunol. 49:123-8, 1982; Miller, A. E., Ann. Neurol. 10:506-10, 1981; Stefansson, K. in
Clinical Neurology of Aging
, Ed. M. L. Albert, Oxford Univ. Press, 1984, pp. 76-94), the implication of HLA regions of chromosome 6 and the GM locus chromosome 14 in a large kindred with Alzheimer's disease (Weitkamp, L. R., Am. J. Hum. Genet. 35:443-53, 1983) and by the altered immunological parameters in Down's syndrome, a disease whose symptoms are similar to senile dementia of the Alzheimer's type (SDAT).
Scientists in the nascent field of neuroimmunology have hypothesized the effects and the function of brain cells (neurons) may be observed concomitantly as parallel defects or deficiencies in receptors on the cells of the immune system (such as peripheral blood immune cells). The validity of this hypothesis was recently brought to light with the aforementioned discovery of HIV infection in neurons. This neuroimmunologic theory has had significant impact because formerly almost all neuropsychiatric disorders were thought to be primarily due to factors such as genetic predisposition, mental attitude, and/or resistance to natural environment rather than defects or deficiencies in cell function. Similarly, though the immune system has been implicated in numerous diseases resulting from infection and cancer to degenerate diseases such as Alzheimer's disease, arthritis and aging, its relationship to cognitive functioning was previously unrealized.
Because the chemical interrelationship between these diverse physiological systems has been recognized only recently, prior art medical treatments and pharmaceutical agents have focused almost exclusively on treating the individual systems alone. Thus, pharmaceutical compounds have been developed for treating or regulating the cardiovascular system or the immune system or the central nervous system with the idea of avoiding undesirable interactions in what are now known to be related physiological systems. By far the greatest amount of recent effort in the pharmaceutical and medical fields has been devoted to the treatment and regulation of the immune system alone. Numerous immunomodulating and antiviral agents have been disclosed in the art such as those described in European Patent Application Publication No. 0126813 (Simon et al.), U.S. Pat. No. 4,221,909 (Simon et al.), U.S. Pat. No. 4, 211, 794 (Kraska), and U.S. Pat. No. 4,221,910 (Giner-Sorolla). Unlike antibiotics which directly attack or destroy invading organisms such as bacteria, immunomodulating agents and more specifically immune enhancing agents are compounds which help to bolster the body's own defense mechanisms against the effects of infections. Immunomodulators either restore depressed immune function, or suppress hyperactive imm

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Use of 9-substituted hypoxanthine derivatives to stimulate... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Use of 9-substituted hypoxanthine derivatives to stimulate..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Use of 9-substituted hypoxanthine derivatives to stimulate... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2536131

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.